Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology

More information about a person's genetic makeup, drug response, multi-omics response, and genomic response is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non-animal testing has fueled the computational toxicogenomics as a pivotal part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2023-07, Vol.163, p.114784-114784, Article 114784
Hauptverfasser: Singh, Ajay Vikram, Chandrasekar, Vaisali, Paudel, Namuna, Laux, Peter, Luch, Andreas, Gemmati, Donato, Tisato, Veronica, Prabhu, Kirti S., Uddin, Shahab, Dakua, Sarada Prasad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114784
container_issue
container_start_page 114784
container_title Biomedicine & pharmacotherapy
container_volume 163
creator Singh, Ajay Vikram
Chandrasekar, Vaisali
Paudel, Namuna
Laux, Peter
Luch, Andreas
Gemmati, Donato
Tisato, Veronica
Prabhu, Kirti S.
Uddin, Shahab
Dakua, Sarada Prasad
description More information about a person's genetic makeup, drug response, multi-omics response, and genomic response is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non-animal testing has fueled the computational toxicogenomics as a pivotal part of the next-gen risk assessment paradigm. Artificial Intelligence (AI) has the potential to provid new ways analyzing the patient data and making predictions about treatment outcomes or toxicity. As personalized medicine and toxicogenomics involve huge data processing, AI can expedite this process by providing powerful data processing, analysis, and interpretation algorithms. AI can process and integrate a multitude of data including genome data, patient records, clinical data and identify patterns to derive predictive models anticipating clinical outcomes and assessing the risk of any personalized medicine approaches. In this article, we have studied the current trends and future perspectives in personalized medicine & toxicology, the role of toxicogenomics in connecting the two fields, and the impact of AI on personalized medicine & toxicology. In this work, we also study the key challenges and limitations in personalized medicine, toxicogenomics, and AI in order to fully realize their potential. [Display omitted] •Established the relationship between personalized medicine and toxicology.•Outlined the importance of artificial intelligence in the current clinical decision-making process.•Overview of the various bottlenecks in artificial intelligence applications.•Provided a roadmap to future researchers on integrating precision medicine, toxicology and artificial intelligence.
doi_str_mv 10.1016/j.biopha.2023.114784
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2808218315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0753332223005735</els_id><sourcerecordid>2808218315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f7476dae2d205fe9efe98a7b82afd371e074aa693108e745e15870b33610bc273</originalsourceid><addsrcrecordid>eNp9kM1qGzEURkVpaNy0b1CKlt2McyXNjOQsAsH0x5CQTbIWGs2dscx45EiyaaAPH7njZJmFEIjzfVf3EPKNwZwBqy8388b53drMOXAxZ6yUqvxAZmxRQVEDyI9kBrIShRCcn5PPMW4AoKqF-kTOhWScsYrPyL_VmLAPJrkD0uT_Out7HP3W2XhFb9qDGa0be7oLaF10fqRbbF1-QmrG9hQYfP9M0zr4fb-mJiTXZcIM1OXqYXC5z074_d1qGWlCux7_h76Qs84MEb-e7gvy-Ovnw_JPcXv_e7W8uS1sCSoVnSxl3RrkLYeqwwXmo4xsFDddm1dBkKUx9UIwUCjLClmlJDRC1Away6W4ID-m3l3wT3uMSW9dtPlvZkS_j5orUJwpwaqMlhNqg48xYKd3wW1NeNYM9NG73ujJuz5615P3HPt-mrBvsqG30KvoDFxPAOY9Dw6DjtYdxbQuq0269e79CS8yzpgV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808218315</pqid></control><display><type>article</type><title>Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Singh, Ajay Vikram ; Chandrasekar, Vaisali ; Paudel, Namuna ; Laux, Peter ; Luch, Andreas ; Gemmati, Donato ; Tisato, Veronica ; Prabhu, Kirti S. ; Uddin, Shahab ; Dakua, Sarada Prasad</creator><creatorcontrib>Singh, Ajay Vikram ; Chandrasekar, Vaisali ; Paudel, Namuna ; Laux, Peter ; Luch, Andreas ; Gemmati, Donato ; Tisato, Veronica ; Prabhu, Kirti S. ; Uddin, Shahab ; Dakua, Sarada Prasad</creatorcontrib><description>More information about a person's genetic makeup, drug response, multi-omics response, and genomic response is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non-animal testing has fueled the computational toxicogenomics as a pivotal part of the next-gen risk assessment paradigm. Artificial Intelligence (AI) has the potential to provid new ways analyzing the patient data and making predictions about treatment outcomes or toxicity. As personalized medicine and toxicogenomics involve huge data processing, AI can expedite this process by providing powerful data processing, analysis, and interpretation algorithms. AI can process and integrate a multitude of data including genome data, patient records, clinical data and identify patterns to derive predictive models anticipating clinical outcomes and assessing the risk of any personalized medicine approaches. In this article, we have studied the current trends and future perspectives in personalized medicine &amp; toxicology, the role of toxicogenomics in connecting the two fields, and the impact of AI on personalized medicine &amp; toxicology. In this work, we also study the key challenges and limitations in personalized medicine, toxicogenomics, and AI in order to fully realize their potential. [Display omitted] •Established the relationship between personalized medicine and toxicology.•Outlined the importance of artificial intelligence in the current clinical decision-making process.•Overview of the various bottlenecks in artificial intelligence applications.•Provided a roadmap to future researchers on integrating precision medicine, toxicology and artificial intelligence.</description><identifier>ISSN: 0753-3322</identifier><identifier>EISSN: 1950-6007</identifier><identifier>DOI: 10.1016/j.biopha.2023.114784</identifier><identifier>PMID: 37121152</identifier><language>eng</language><publisher>France: Elsevier Masson SAS</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial Intelligence (AI) ; Humans ; Personalized medicine ; Precision Medicine ; Technology ; Toxicogenetics ; Toxicogenomics ; Toxicology</subject><ispartof>Biomedicine &amp; pharmacotherapy, 2023-07, Vol.163, p.114784-114784, Article 114784</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Masson SAS.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f7476dae2d205fe9efe98a7b82afd371e074aa693108e745e15870b33610bc273</citedby><cites>FETCH-LOGICAL-c408t-f7476dae2d205fe9efe98a7b82afd371e074aa693108e745e15870b33610bc273</cites><orcidid>0000-0003-2979-0272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0753332223005735$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37121152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Ajay Vikram</creatorcontrib><creatorcontrib>Chandrasekar, Vaisali</creatorcontrib><creatorcontrib>Paudel, Namuna</creatorcontrib><creatorcontrib>Laux, Peter</creatorcontrib><creatorcontrib>Luch, Andreas</creatorcontrib><creatorcontrib>Gemmati, Donato</creatorcontrib><creatorcontrib>Tisato, Veronica</creatorcontrib><creatorcontrib>Prabhu, Kirti S.</creatorcontrib><creatorcontrib>Uddin, Shahab</creatorcontrib><creatorcontrib>Dakua, Sarada Prasad</creatorcontrib><title>Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology</title><title>Biomedicine &amp; pharmacotherapy</title><addtitle>Biomed Pharmacother</addtitle><description>More information about a person's genetic makeup, drug response, multi-omics response, and genomic response is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non-animal testing has fueled the computational toxicogenomics as a pivotal part of the next-gen risk assessment paradigm. Artificial Intelligence (AI) has the potential to provid new ways analyzing the patient data and making predictions about treatment outcomes or toxicity. As personalized medicine and toxicogenomics involve huge data processing, AI can expedite this process by providing powerful data processing, analysis, and interpretation algorithms. AI can process and integrate a multitude of data including genome data, patient records, clinical data and identify patterns to derive predictive models anticipating clinical outcomes and assessing the risk of any personalized medicine approaches. In this article, we have studied the current trends and future perspectives in personalized medicine &amp; toxicology, the role of toxicogenomics in connecting the two fields, and the impact of AI on personalized medicine &amp; toxicology. In this work, we also study the key challenges and limitations in personalized medicine, toxicogenomics, and AI in order to fully realize their potential. [Display omitted] •Established the relationship between personalized medicine and toxicology.•Outlined the importance of artificial intelligence in the current clinical decision-making process.•Overview of the various bottlenecks in artificial intelligence applications.•Provided a roadmap to future researchers on integrating precision medicine, toxicology and artificial intelligence.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial Intelligence (AI)</subject><subject>Humans</subject><subject>Personalized medicine</subject><subject>Precision Medicine</subject><subject>Technology</subject><subject>Toxicogenetics</subject><subject>Toxicogenomics</subject><subject>Toxicology</subject><issn>0753-3322</issn><issn>1950-6007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1qGzEURkVpaNy0b1CKlt2McyXNjOQsAsH0x5CQTbIWGs2dscx45EiyaaAPH7njZJmFEIjzfVf3EPKNwZwBqy8388b53drMOXAxZ6yUqvxAZmxRQVEDyI9kBrIShRCcn5PPMW4AoKqF-kTOhWScsYrPyL_VmLAPJrkD0uT_Out7HP3W2XhFb9qDGa0be7oLaF10fqRbbF1-QmrG9hQYfP9M0zr4fb-mJiTXZcIM1OXqYXC5z074_d1qGWlCux7_h76Qs84MEb-e7gvy-Ovnw_JPcXv_e7W8uS1sCSoVnSxl3RrkLYeqwwXmo4xsFDddm1dBkKUx9UIwUCjLClmlJDRC1Away6W4ID-m3l3wT3uMSW9dtPlvZkS_j5orUJwpwaqMlhNqg48xYKd3wW1NeNYM9NG73ujJuz5615P3HPt-mrBvsqG30KvoDFxPAOY9Dw6DjtYdxbQuq0269e79CS8yzpgV</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Singh, Ajay Vikram</creator><creator>Chandrasekar, Vaisali</creator><creator>Paudel, Namuna</creator><creator>Laux, Peter</creator><creator>Luch, Andreas</creator><creator>Gemmati, Donato</creator><creator>Tisato, Veronica</creator><creator>Prabhu, Kirti S.</creator><creator>Uddin, Shahab</creator><creator>Dakua, Sarada Prasad</creator><general>Elsevier Masson SAS</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2979-0272</orcidid></search><sort><creationdate>202307</creationdate><title>Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology</title><author>Singh, Ajay Vikram ; Chandrasekar, Vaisali ; Paudel, Namuna ; Laux, Peter ; Luch, Andreas ; Gemmati, Donato ; Tisato, Veronica ; Prabhu, Kirti S. ; Uddin, Shahab ; Dakua, Sarada Prasad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f7476dae2d205fe9efe98a7b82afd371e074aa693108e745e15870b33610bc273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial Intelligence (AI)</topic><topic>Humans</topic><topic>Personalized medicine</topic><topic>Precision Medicine</topic><topic>Technology</topic><topic>Toxicogenetics</topic><topic>Toxicogenomics</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Ajay Vikram</creatorcontrib><creatorcontrib>Chandrasekar, Vaisali</creatorcontrib><creatorcontrib>Paudel, Namuna</creatorcontrib><creatorcontrib>Laux, Peter</creatorcontrib><creatorcontrib>Luch, Andreas</creatorcontrib><creatorcontrib>Gemmati, Donato</creatorcontrib><creatorcontrib>Tisato, Veronica</creatorcontrib><creatorcontrib>Prabhu, Kirti S.</creatorcontrib><creatorcontrib>Uddin, Shahab</creatorcontrib><creatorcontrib>Dakua, Sarada Prasad</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedicine &amp; pharmacotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Ajay Vikram</au><au>Chandrasekar, Vaisali</au><au>Paudel, Namuna</au><au>Laux, Peter</au><au>Luch, Andreas</au><au>Gemmati, Donato</au><au>Tisato, Veronica</au><au>Prabhu, Kirti S.</au><au>Uddin, Shahab</au><au>Dakua, Sarada Prasad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology</atitle><jtitle>Biomedicine &amp; pharmacotherapy</jtitle><addtitle>Biomed Pharmacother</addtitle><date>2023-07</date><risdate>2023</risdate><volume>163</volume><spage>114784</spage><epage>114784</epage><pages>114784-114784</pages><artnum>114784</artnum><issn>0753-3322</issn><eissn>1950-6007</eissn><abstract>More information about a person's genetic makeup, drug response, multi-omics response, and genomic response is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non-animal testing has fueled the computational toxicogenomics as a pivotal part of the next-gen risk assessment paradigm. Artificial Intelligence (AI) has the potential to provid new ways analyzing the patient data and making predictions about treatment outcomes or toxicity. As personalized medicine and toxicogenomics involve huge data processing, AI can expedite this process by providing powerful data processing, analysis, and interpretation algorithms. AI can process and integrate a multitude of data including genome data, patient records, clinical data and identify patterns to derive predictive models anticipating clinical outcomes and assessing the risk of any personalized medicine approaches. In this article, we have studied the current trends and future perspectives in personalized medicine &amp; toxicology, the role of toxicogenomics in connecting the two fields, and the impact of AI on personalized medicine &amp; toxicology. In this work, we also study the key challenges and limitations in personalized medicine, toxicogenomics, and AI in order to fully realize their potential. [Display omitted] •Established the relationship between personalized medicine and toxicology.•Outlined the importance of artificial intelligence in the current clinical decision-making process.•Overview of the various bottlenecks in artificial intelligence applications.•Provided a roadmap to future researchers on integrating precision medicine, toxicology and artificial intelligence.</abstract><cop>France</cop><pub>Elsevier Masson SAS</pub><pmid>37121152</pmid><doi>10.1016/j.biopha.2023.114784</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2979-0272</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0753-3322
ispartof Biomedicine & pharmacotherapy, 2023-07, Vol.163, p.114784-114784, Article 114784
issn 0753-3322
1950-6007
language eng
recordid cdi_proquest_miscellaneous_2808218315
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial Intelligence
Artificial Intelligence (AI)
Humans
Personalized medicine
Precision Medicine
Technology
Toxicogenetics
Toxicogenomics
Toxicology
title Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20toxicogenomics:%20Advancing%20precision%20medicine%20and%20toxicology%20through%20artificial%20intelligence%20and%20OMICs%20technology&rft.jtitle=Biomedicine%20&%20pharmacotherapy&rft.au=Singh,%20Ajay%20Vikram&rft.date=2023-07&rft.volume=163&rft.spage=114784&rft.epage=114784&rft.pages=114784-114784&rft.artnum=114784&rft.issn=0753-3322&rft.eissn=1950-6007&rft_id=info:doi/10.1016/j.biopha.2023.114784&rft_dat=%3Cproquest_cross%3E2808218315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808218315&rft_id=info:pmid/37121152&rft_els_id=S0753332223005735&rfr_iscdi=true