Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication

Intelligent manufacturing of ultra-precision optical surfaces is urgently desired but rather difficult to achieve due to the complex physical interactions involved. The development of data-oriented neural networks provides a new pathway, but existing networks cannot be adapted for optical fabricatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2023-05, Vol.48 (9), p.2468-2471
Hauptverfasser: Guo, Hao, Wan, Songlin, Li, Hanjie, Zhang, Lanya, Zhang, Haoyang, Gu, Haojin, Lu, Qing, Jiang, Guochang, Liang, Yichu, Wei, Chaoyang, Shao, Jianda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2471
container_issue 9
container_start_page 2468
container_title Optics letters
container_volume 48
creator Guo, Hao
Wan, Songlin
Li, Hanjie
Zhang, Lanya
Zhang, Haoyang
Gu, Haojin
Lu, Qing
Jiang, Guochang
Liang, Yichu
Wei, Chaoyang
Shao, Jianda
description Intelligent manufacturing of ultra-precision optical surfaces is urgently desired but rather difficult to achieve due to the complex physical interactions involved. The development of data-oriented neural networks provides a new pathway, but existing networks cannot be adapted for optical fabrication with a high number of feature dimensions and a small specific dataset. In this Letter, for the first time to the best of our knowledge, a novel Fourier convolution-parallel neural network (FCPNN) framework with library matching was proposed to realize multi-tool processing decision-making, including basically all combination processing parameters (tool size and material, slurry type and removal rate). The number of feature dimensions required to achieve supervised learning with a hundred-level dataset is reduced by 3-5 orders of magnitude. Under the guidance of the proposed network model, a 260 mm × 260 mm off-axis parabolic (OAP) fused silica mirror successfully achieved error convergence after a multi-process involving grinding, figuring, and smoothing. The peak valley (PV) of the form error for the OAP fused silica mirror decreased from 15.153λ to 0.42λ and the root mean square (RMS) decreased from 2.944λ to 0.064λ in only 25.34 hours. This network framework has the potential to push the intelligence level of optical manufacturing to a new extreme.
doi_str_mv 10.1364/OL.489809
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2808217138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808666925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-46be8069bfa6bc97cf245a63d6271d9bdd50e06491a9c6d2a1158ecc98a12b993</originalsourceid><addsrcrecordid>eNpdkU1OwzAQhS0EoqWw4ALIEhtYpPgnceIlqiggVeoG1pHjONStExfboeIOHBqnBRas5o3m05vRPAAuMZpiytK75WKaFrxA_AiMcUZ5kuY8PQZjhFOW8IyTETjzfo0QYjmlp2BEc0wYRWgMvua2d1o5KG33YU0ftO2SrXDCGGVgp_qoYgk76zawcaJVe7XTYQWNrpxwn7AVQa509wYb62Dbm6CTYK2BW2el8n6Y1EpqP1i3YjP0uoN2G7SM5o2oXBTD4nNw0gjj1cVPnYDX-cPL7ClZLB-fZ_eLRJKchiRllSoQ41UjWCV5LhuSZoLRmpEc17yq6wwpxFKOBZesJgLjrFBS8kJgUnFOJ-Dm4BsvfO-VD2WrvVTGiE7Z3pekQAXBOaZFRK__oev4sC5et6cYY5xkkbo9UNJZ751qyq3TbfxNiVE5RFQuF-Uhoshe_Tj2VavqP_I3E_oNqjSO6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808666925</pqid></control><display><type>article</type><title>Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication</title><source>Optica Publishing Group Journals</source><creator>Guo, Hao ; Wan, Songlin ; Li, Hanjie ; Zhang, Lanya ; Zhang, Haoyang ; Gu, Haojin ; Lu, Qing ; Jiang, Guochang ; Liang, Yichu ; Wei, Chaoyang ; Shao, Jianda</creator><creatorcontrib>Guo, Hao ; Wan, Songlin ; Li, Hanjie ; Zhang, Lanya ; Zhang, Haoyang ; Gu, Haojin ; Lu, Qing ; Jiang, Guochang ; Liang, Yichu ; Wei, Chaoyang ; Shao, Jianda</creatorcontrib><description>Intelligent manufacturing of ultra-precision optical surfaces is urgently desired but rather difficult to achieve due to the complex physical interactions involved. The development of data-oriented neural networks provides a new pathway, but existing networks cannot be adapted for optical fabrication with a high number of feature dimensions and a small specific dataset. In this Letter, for the first time to the best of our knowledge, a novel Fourier convolution-parallel neural network (FCPNN) framework with library matching was proposed to realize multi-tool processing decision-making, including basically all combination processing parameters (tool size and material, slurry type and removal rate). The number of feature dimensions required to achieve supervised learning with a hundred-level dataset is reduced by 3-5 orders of magnitude. Under the guidance of the proposed network model, a 260 mm × 260 mm off-axis parabolic (OAP) fused silica mirror successfully achieved error convergence after a multi-process involving grinding, figuring, and smoothing. The peak valley (PV) of the form error for the OAP fused silica mirror decreased from 15.153λ to 0.42λ and the root mean square (RMS) decreased from 2.944λ to 0.064λ in only 25.34 hours. This network framework has the potential to push the intelligence level of optical manufacturing to a new extreme.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.489809</identifier><identifier>PMID: 37126300</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Convolution ; Datasets ; Decision making ; Fused silica ; Intelligent manufacturing systems ; Libraries ; Matching ; Neural networks ; Process parameters ; Supervised learning</subject><ispartof>Optics letters, 2023-05, Vol.48 (9), p.2468-2471</ispartof><rights>Copyright Optical Society of America May 1, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-46be8069bfa6bc97cf245a63d6271d9bdd50e06491a9c6d2a1158ecc98a12b993</cites><orcidid>0000-0001-9740-2716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3260,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37126300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Hao</creatorcontrib><creatorcontrib>Wan, Songlin</creatorcontrib><creatorcontrib>Li, Hanjie</creatorcontrib><creatorcontrib>Zhang, Lanya</creatorcontrib><creatorcontrib>Zhang, Haoyang</creatorcontrib><creatorcontrib>Gu, Haojin</creatorcontrib><creatorcontrib>Lu, Qing</creatorcontrib><creatorcontrib>Jiang, Guochang</creatorcontrib><creatorcontrib>Liang, Yichu</creatorcontrib><creatorcontrib>Wei, Chaoyang</creatorcontrib><creatorcontrib>Shao, Jianda</creatorcontrib><title>Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>Intelligent manufacturing of ultra-precision optical surfaces is urgently desired but rather difficult to achieve due to the complex physical interactions involved. The development of data-oriented neural networks provides a new pathway, but existing networks cannot be adapted for optical fabrication with a high number of feature dimensions and a small specific dataset. In this Letter, for the first time to the best of our knowledge, a novel Fourier convolution-parallel neural network (FCPNN) framework with library matching was proposed to realize multi-tool processing decision-making, including basically all combination processing parameters (tool size and material, slurry type and removal rate). The number of feature dimensions required to achieve supervised learning with a hundred-level dataset is reduced by 3-5 orders of magnitude. Under the guidance of the proposed network model, a 260 mm × 260 mm off-axis parabolic (OAP) fused silica mirror successfully achieved error convergence after a multi-process involving grinding, figuring, and smoothing. The peak valley (PV) of the form error for the OAP fused silica mirror decreased from 15.153λ to 0.42λ and the root mean square (RMS) decreased from 2.944λ to 0.064λ in only 25.34 hours. This network framework has the potential to push the intelligence level of optical manufacturing to a new extreme.</description><subject>Convolution</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Fused silica</subject><subject>Intelligent manufacturing systems</subject><subject>Libraries</subject><subject>Matching</subject><subject>Neural networks</subject><subject>Process parameters</subject><subject>Supervised learning</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1OwzAQhS0EoqWw4ALIEhtYpPgnceIlqiggVeoG1pHjONStExfboeIOHBqnBRas5o3m05vRPAAuMZpiytK75WKaFrxA_AiMcUZ5kuY8PQZjhFOW8IyTETjzfo0QYjmlp2BEc0wYRWgMvua2d1o5KG33YU0ftO2SrXDCGGVgp_qoYgk76zawcaJVe7XTYQWNrpxwn7AVQa509wYb62Dbm6CTYK2BW2el8n6Y1EpqP1i3YjP0uoN2G7SM5o2oXBTD4nNw0gjj1cVPnYDX-cPL7ClZLB-fZ_eLRJKchiRllSoQ41UjWCV5LhuSZoLRmpEc17yq6wwpxFKOBZesJgLjrFBS8kJgUnFOJ-Dm4BsvfO-VD2WrvVTGiE7Z3pekQAXBOaZFRK__oev4sC5et6cYY5xkkbo9UNJZ751qyq3TbfxNiVE5RFQuF-Uhoshe_Tj2VavqP_I3E_oNqjSO6g</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Guo, Hao</creator><creator>Wan, Songlin</creator><creator>Li, Hanjie</creator><creator>Zhang, Lanya</creator><creator>Zhang, Haoyang</creator><creator>Gu, Haojin</creator><creator>Lu, Qing</creator><creator>Jiang, Guochang</creator><creator>Liang, Yichu</creator><creator>Wei, Chaoyang</creator><creator>Shao, Jianda</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9740-2716</orcidid></search><sort><creationdate>20230501</creationdate><title>Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication</title><author>Guo, Hao ; Wan, Songlin ; Li, Hanjie ; Zhang, Lanya ; Zhang, Haoyang ; Gu, Haojin ; Lu, Qing ; Jiang, Guochang ; Liang, Yichu ; Wei, Chaoyang ; Shao, Jianda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-46be8069bfa6bc97cf245a63d6271d9bdd50e06491a9c6d2a1158ecc98a12b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convolution</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Fused silica</topic><topic>Intelligent manufacturing systems</topic><topic>Libraries</topic><topic>Matching</topic><topic>Neural networks</topic><topic>Process parameters</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hao</creatorcontrib><creatorcontrib>Wan, Songlin</creatorcontrib><creatorcontrib>Li, Hanjie</creatorcontrib><creatorcontrib>Zhang, Lanya</creatorcontrib><creatorcontrib>Zhang, Haoyang</creatorcontrib><creatorcontrib>Gu, Haojin</creatorcontrib><creatorcontrib>Lu, Qing</creatorcontrib><creatorcontrib>Jiang, Guochang</creatorcontrib><creatorcontrib>Liang, Yichu</creatorcontrib><creatorcontrib>Wei, Chaoyang</creatorcontrib><creatorcontrib>Shao, Jianda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hao</au><au>Wan, Songlin</au><au>Li, Hanjie</au><au>Zhang, Lanya</au><au>Zhang, Haoyang</au><au>Gu, Haojin</au><au>Lu, Qing</au><au>Jiang, Guochang</au><au>Liang, Yichu</au><au>Wei, Chaoyang</au><au>Shao, Jianda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>48</volume><issue>9</issue><spage>2468</spage><epage>2471</epage><pages>2468-2471</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Intelligent manufacturing of ultra-precision optical surfaces is urgently desired but rather difficult to achieve due to the complex physical interactions involved. The development of data-oriented neural networks provides a new pathway, but existing networks cannot be adapted for optical fabrication with a high number of feature dimensions and a small specific dataset. In this Letter, for the first time to the best of our knowledge, a novel Fourier convolution-parallel neural network (FCPNN) framework with library matching was proposed to realize multi-tool processing decision-making, including basically all combination processing parameters (tool size and material, slurry type and removal rate). The number of feature dimensions required to achieve supervised learning with a hundred-level dataset is reduced by 3-5 orders of magnitude. Under the guidance of the proposed network model, a 260 mm × 260 mm off-axis parabolic (OAP) fused silica mirror successfully achieved error convergence after a multi-process involving grinding, figuring, and smoothing. The peak valley (PV) of the form error for the OAP fused silica mirror decreased from 15.153λ to 0.42λ and the root mean square (RMS) decreased from 2.944λ to 0.064λ in only 25.34 hours. This network framework has the potential to push the intelligence level of optical manufacturing to a new extreme.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>37126300</pmid><doi>10.1364/OL.489809</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9740-2716</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2023-05, Vol.48 (9), p.2468-2471
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_2808217138
source Optica Publishing Group Journals
subjects Convolution
Datasets
Decision making
Fused silica
Intelligent manufacturing systems
Libraries
Matching
Neural networks
Process parameters
Supervised learning
title Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20convolution-parallel%20neural%20network%20framework%20with%20library%20matching%20for%20multi-tool%20processing%20decision-making%20in%20optical%20fabrication&rft.jtitle=Optics%20letters&rft.au=Guo,%20Hao&rft.date=2023-05-01&rft.volume=48&rft.issue=9&rft.spage=2468&rft.epage=2471&rft.pages=2468-2471&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.489809&rft_dat=%3Cproquest_cross%3E2808666925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808666925&rft_id=info:pmid/37126300&rfr_iscdi=true