Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication
Intelligent manufacturing of ultra-precision optical surfaces is urgently desired but rather difficult to achieve due to the complex physical interactions involved. The development of data-oriented neural networks provides a new pathway, but existing networks cannot be adapted for optical fabricatio...
Gespeichert in:
Veröffentlicht in: | Optics letters 2023-05, Vol.48 (9), p.2468-2471 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2471 |
---|---|
container_issue | 9 |
container_start_page | 2468 |
container_title | Optics letters |
container_volume | 48 |
creator | Guo, Hao Wan, Songlin Li, Hanjie Zhang, Lanya Zhang, Haoyang Gu, Haojin Lu, Qing Jiang, Guochang Liang, Yichu Wei, Chaoyang Shao, Jianda |
description | Intelligent manufacturing of ultra-precision optical surfaces is urgently desired but rather difficult to achieve due to the complex physical interactions involved. The development of data-oriented neural networks provides a new pathway, but existing networks cannot be adapted for optical fabrication with a high number of feature dimensions and a small specific dataset. In this Letter, for the first time to the best of our knowledge, a novel Fourier convolution-parallel neural network (FCPNN) framework with library matching was proposed to realize multi-tool processing decision-making, including basically all combination processing parameters (tool size and material, slurry type and removal rate). The number of feature dimensions required to achieve supervised learning with a hundred-level dataset is reduced by 3-5 orders of magnitude. Under the guidance of the proposed network model, a 260 mm × 260 mm off-axis parabolic (OAP) fused silica mirror successfully achieved error convergence after a multi-process involving grinding, figuring, and smoothing. The peak valley (PV) of the form error for the OAP fused silica mirror decreased from 15.153λ to 0.42λ and the root mean square (RMS) decreased from 2.944λ to 0.064λ in only 25.34 hours. This network framework has the potential to push the intelligence level of optical manufacturing to a new extreme. |
doi_str_mv | 10.1364/OL.489809 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2808217138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808666925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-46be8069bfa6bc97cf245a63d6271d9bdd50e06491a9c6d2a1158ecc98a12b993</originalsourceid><addsrcrecordid>eNpdkU1OwzAQhS0EoqWw4ALIEhtYpPgnceIlqiggVeoG1pHjONStExfboeIOHBqnBRas5o3m05vRPAAuMZpiytK75WKaFrxA_AiMcUZ5kuY8PQZjhFOW8IyTETjzfo0QYjmlp2BEc0wYRWgMvua2d1o5KG33YU0ftO2SrXDCGGVgp_qoYgk76zawcaJVe7XTYQWNrpxwn7AVQa509wYb62Dbm6CTYK2BW2el8n6Y1EpqP1i3YjP0uoN2G7SM5o2oXBTD4nNw0gjj1cVPnYDX-cPL7ClZLB-fZ_eLRJKchiRllSoQ41UjWCV5LhuSZoLRmpEc17yq6wwpxFKOBZesJgLjrFBS8kJgUnFOJ-Dm4BsvfO-VD2WrvVTGiE7Z3pekQAXBOaZFRK__oev4sC5et6cYY5xkkbo9UNJZ751qyq3TbfxNiVE5RFQuF-Uhoshe_Tj2VavqP_I3E_oNqjSO6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808666925</pqid></control><display><type>article</type><title>Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication</title><source>Optica Publishing Group Journals</source><creator>Guo, Hao ; Wan, Songlin ; Li, Hanjie ; Zhang, Lanya ; Zhang, Haoyang ; Gu, Haojin ; Lu, Qing ; Jiang, Guochang ; Liang, Yichu ; Wei, Chaoyang ; Shao, Jianda</creator><creatorcontrib>Guo, Hao ; Wan, Songlin ; Li, Hanjie ; Zhang, Lanya ; Zhang, Haoyang ; Gu, Haojin ; Lu, Qing ; Jiang, Guochang ; Liang, Yichu ; Wei, Chaoyang ; Shao, Jianda</creatorcontrib><description>Intelligent manufacturing of ultra-precision optical surfaces is urgently desired but rather difficult to achieve due to the complex physical interactions involved. The development of data-oriented neural networks provides a new pathway, but existing networks cannot be adapted for optical fabrication with a high number of feature dimensions and a small specific dataset. In this Letter, for the first time to the best of our knowledge, a novel Fourier convolution-parallel neural network (FCPNN) framework with library matching was proposed to realize multi-tool processing decision-making, including basically all combination processing parameters (tool size and material, slurry type and removal rate). The number of feature dimensions required to achieve supervised learning with a hundred-level dataset is reduced by 3-5 orders of magnitude. Under the guidance of the proposed network model, a 260 mm × 260 mm off-axis parabolic (OAP) fused silica mirror successfully achieved error convergence after a multi-process involving grinding, figuring, and smoothing. The peak valley (PV) of the form error for the OAP fused silica mirror decreased from 15.153λ to 0.42λ and the root mean square (RMS) decreased from 2.944λ to 0.064λ in only 25.34 hours. This network framework has the potential to push the intelligence level of optical manufacturing to a new extreme.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.489809</identifier><identifier>PMID: 37126300</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Convolution ; Datasets ; Decision making ; Fused silica ; Intelligent manufacturing systems ; Libraries ; Matching ; Neural networks ; Process parameters ; Supervised learning</subject><ispartof>Optics letters, 2023-05, Vol.48 (9), p.2468-2471</ispartof><rights>Copyright Optical Society of America May 1, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-46be8069bfa6bc97cf245a63d6271d9bdd50e06491a9c6d2a1158ecc98a12b993</cites><orcidid>0000-0001-9740-2716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3260,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37126300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Hao</creatorcontrib><creatorcontrib>Wan, Songlin</creatorcontrib><creatorcontrib>Li, Hanjie</creatorcontrib><creatorcontrib>Zhang, Lanya</creatorcontrib><creatorcontrib>Zhang, Haoyang</creatorcontrib><creatorcontrib>Gu, Haojin</creatorcontrib><creatorcontrib>Lu, Qing</creatorcontrib><creatorcontrib>Jiang, Guochang</creatorcontrib><creatorcontrib>Liang, Yichu</creatorcontrib><creatorcontrib>Wei, Chaoyang</creatorcontrib><creatorcontrib>Shao, Jianda</creatorcontrib><title>Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>Intelligent manufacturing of ultra-precision optical surfaces is urgently desired but rather difficult to achieve due to the complex physical interactions involved. The development of data-oriented neural networks provides a new pathway, but existing networks cannot be adapted for optical fabrication with a high number of feature dimensions and a small specific dataset. In this Letter, for the first time to the best of our knowledge, a novel Fourier convolution-parallel neural network (FCPNN) framework with library matching was proposed to realize multi-tool processing decision-making, including basically all combination processing parameters (tool size and material, slurry type and removal rate). The number of feature dimensions required to achieve supervised learning with a hundred-level dataset is reduced by 3-5 orders of magnitude. Under the guidance of the proposed network model, a 260 mm × 260 mm off-axis parabolic (OAP) fused silica mirror successfully achieved error convergence after a multi-process involving grinding, figuring, and smoothing. The peak valley (PV) of the form error for the OAP fused silica mirror decreased from 15.153λ to 0.42λ and the root mean square (RMS) decreased from 2.944λ to 0.064λ in only 25.34 hours. This network framework has the potential to push the intelligence level of optical manufacturing to a new extreme.</description><subject>Convolution</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Fused silica</subject><subject>Intelligent manufacturing systems</subject><subject>Libraries</subject><subject>Matching</subject><subject>Neural networks</subject><subject>Process parameters</subject><subject>Supervised learning</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1OwzAQhS0EoqWw4ALIEhtYpPgnceIlqiggVeoG1pHjONStExfboeIOHBqnBRas5o3m05vRPAAuMZpiytK75WKaFrxA_AiMcUZ5kuY8PQZjhFOW8IyTETjzfo0QYjmlp2BEc0wYRWgMvua2d1o5KG33YU0ftO2SrXDCGGVgp_qoYgk76zawcaJVe7XTYQWNrpxwn7AVQa509wYb62Dbm6CTYK2BW2el8n6Y1EpqP1i3YjP0uoN2G7SM5o2oXBTD4nNw0gjj1cVPnYDX-cPL7ClZLB-fZ_eLRJKchiRllSoQ41UjWCV5LhuSZoLRmpEc17yq6wwpxFKOBZesJgLjrFBS8kJgUnFOJ-Dm4BsvfO-VD2WrvVTGiE7Z3pekQAXBOaZFRK__oev4sC5et6cYY5xkkbo9UNJZ751qyq3TbfxNiVE5RFQuF-Uhoshe_Tj2VavqP_I3E_oNqjSO6g</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Guo, Hao</creator><creator>Wan, Songlin</creator><creator>Li, Hanjie</creator><creator>Zhang, Lanya</creator><creator>Zhang, Haoyang</creator><creator>Gu, Haojin</creator><creator>Lu, Qing</creator><creator>Jiang, Guochang</creator><creator>Liang, Yichu</creator><creator>Wei, Chaoyang</creator><creator>Shao, Jianda</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9740-2716</orcidid></search><sort><creationdate>20230501</creationdate><title>Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication</title><author>Guo, Hao ; Wan, Songlin ; Li, Hanjie ; Zhang, Lanya ; Zhang, Haoyang ; Gu, Haojin ; Lu, Qing ; Jiang, Guochang ; Liang, Yichu ; Wei, Chaoyang ; Shao, Jianda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-46be8069bfa6bc97cf245a63d6271d9bdd50e06491a9c6d2a1158ecc98a12b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convolution</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Fused silica</topic><topic>Intelligent manufacturing systems</topic><topic>Libraries</topic><topic>Matching</topic><topic>Neural networks</topic><topic>Process parameters</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hao</creatorcontrib><creatorcontrib>Wan, Songlin</creatorcontrib><creatorcontrib>Li, Hanjie</creatorcontrib><creatorcontrib>Zhang, Lanya</creatorcontrib><creatorcontrib>Zhang, Haoyang</creatorcontrib><creatorcontrib>Gu, Haojin</creatorcontrib><creatorcontrib>Lu, Qing</creatorcontrib><creatorcontrib>Jiang, Guochang</creatorcontrib><creatorcontrib>Liang, Yichu</creatorcontrib><creatorcontrib>Wei, Chaoyang</creatorcontrib><creatorcontrib>Shao, Jianda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hao</au><au>Wan, Songlin</au><au>Li, Hanjie</au><au>Zhang, Lanya</au><au>Zhang, Haoyang</au><au>Gu, Haojin</au><au>Lu, Qing</au><au>Jiang, Guochang</au><au>Liang, Yichu</au><au>Wei, Chaoyang</au><au>Shao, Jianda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>48</volume><issue>9</issue><spage>2468</spage><epage>2471</epage><pages>2468-2471</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Intelligent manufacturing of ultra-precision optical surfaces is urgently desired but rather difficult to achieve due to the complex physical interactions involved. The development of data-oriented neural networks provides a new pathway, but existing networks cannot be adapted for optical fabrication with a high number of feature dimensions and a small specific dataset. In this Letter, for the first time to the best of our knowledge, a novel Fourier convolution-parallel neural network (FCPNN) framework with library matching was proposed to realize multi-tool processing decision-making, including basically all combination processing parameters (tool size and material, slurry type and removal rate). The number of feature dimensions required to achieve supervised learning with a hundred-level dataset is reduced by 3-5 orders of magnitude. Under the guidance of the proposed network model, a 260 mm × 260 mm off-axis parabolic (OAP) fused silica mirror successfully achieved error convergence after a multi-process involving grinding, figuring, and smoothing. The peak valley (PV) of the form error for the OAP fused silica mirror decreased from 15.153λ to 0.42λ and the root mean square (RMS) decreased from 2.944λ to 0.064λ in only 25.34 hours. This network framework has the potential to push the intelligence level of optical manufacturing to a new extreme.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>37126300</pmid><doi>10.1364/OL.489809</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9740-2716</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2023-05, Vol.48 (9), p.2468-2471 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_2808217138 |
source | Optica Publishing Group Journals |
subjects | Convolution Datasets Decision making Fused silica Intelligent manufacturing systems Libraries Matching Neural networks Process parameters Supervised learning |
title | Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20convolution-parallel%20neural%20network%20framework%20with%20library%20matching%20for%20multi-tool%20processing%20decision-making%20in%20optical%20fabrication&rft.jtitle=Optics%20letters&rft.au=Guo,%20Hao&rft.date=2023-05-01&rft.volume=48&rft.issue=9&rft.spage=2468&rft.epage=2471&rft.pages=2468-2471&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.489809&rft_dat=%3Cproquest_cross%3E2808666925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808666925&rft_id=info:pmid/37126300&rfr_iscdi=true |