Approach and applications of constrained ICA
This work presents the technique of constrained independent component analysis (cICA) and demonstrates two applications, less-complete ICA, and ICA with reference (ICA-R). The cICA is proposed as a general framework to incorporate additional requirements and prior information in the form of constrai...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2005-01, Vol.16 (1), p.203-212 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents the technique of constrained independent component analysis (cICA) and demonstrates two applications, less-complete ICA, and ICA with reference (ICA-R). The cICA is proposed as a general framework to incorporate additional requirements and prior information in the form of constraints into the ICA contrast function. The adaptive solutions using the Newton-like learning are proposed to solve the constrained optimization problem. The applications illustrate the versatility of the cICA by separating subspaces of independent components according to density types and extracting a set of desired sources when rough templates are available. The experiments using face images and functional MR images demonstrate the usage and efficacy of the cICA. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2004.836795 |