Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms
Automatic peptide identification from collision‐induced dissociation tandem mass spectrometry data using optimization techniques is made difficult by large plateaus in the fitness landscapes of scoring functions, by the fuzzy nature of constraints from noisy data and by the existence of diverse but...
Gespeichert in:
Veröffentlicht in: | Concurrency and Computation. Practice & Experience 2005-12, Vol.17 (14), p.1687-1704 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1704 |
---|---|
container_issue | 14 |
container_start_page | 1687 |
container_title | Concurrency and Computation. Practice & Experience |
container_volume | 17 |
creator | Malard, J. M. Heredia-Langner, A. Cannon, W. R. Mooney, R. Baxter, D. J. |
description | Automatic peptide identification from collision‐induced dissociation tandem mass spectrometry data using optimization techniques is made difficult by large plateaus in the fitness landscapes of scoring functions, by the fuzzy nature of constraints from noisy data and by the existence of diverse but equally justifiable probabilistic models of peak matching. Here, two different scoring functions are combined into a parallel multi‐objective optimization framework. It is shown how multi‐objective optimization can be used to empirically test for independence between distinct scoring functions. The loss of selection pressure during the evolution of a population of putative peptide sequences by a Pareto‐driven genetic algorithm is addressed by alternating between two definitions of fitness according to a numerical threshold. Copyright © 2005 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/cpe.953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28080141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28080141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3563-e4c1051e81c4e1b23f70edd156ead1311e7c7e2eba371e03f1f0899c63e0ff453</originalsourceid><addsrcrecordid>eNp10E1PwzAMBuAKgQQMxF8oFzigjrjp17ihaQwQgh0GHKMsdYehbUaSDcavJ6OIG4fIOTy27DcIjoD1gbH4XC2wP0j5VrAHKY8jlvFk--8fZ7vBvrWvjAEwDntBOcGFoxJD_1pHFSnpSLfhimSodGudkdRiGTbL2lGkZ6-oHK0w1L6roa8ffBFOpEGno5m0ns6xRUcqlPVcG3IvjT0IdipZWzz8rb3g8Wo0HV5Hdw_jm-HlXaR4mvEIEwUsBSxAJQizmFc5w7KENENZAgfAXOUY40zyHJDxCipWDAYq48iqKkl5Lzju5mrrSFhFDtWLv6L1S4siz4oCvDnpzMLo9yVaJxqyCutatqiXVsQFKxgkG3jaQWW0tQYrsTDUSLMWwMQmaeGTFj5pL886-UE1rv9jYjgZdTrqNFmHn39amjeR5TxPxfP9WEzh9t5HMRBP_BtK-Y9_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28080141</pqid></control><display><type>article</type><title>Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms</title><source>Wiley-Blackwell Journals</source><creator>Malard, J. M. ; Heredia-Langner, A. ; Cannon, W. R. ; Mooney, R. ; Baxter, D. J.</creator><creatorcontrib>Malard, J. M. ; Heredia-Langner, A. ; Cannon, W. R. ; Mooney, R. ; Baxter, D. J. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Automatic peptide identification from collision‐induced dissociation tandem mass spectrometry data using optimization techniques is made difficult by large plateaus in the fitness landscapes of scoring functions, by the fuzzy nature of constraints from noisy data and by the existence of diverse but equally justifiable probabilistic models of peak matching. Here, two different scoring functions are combined into a parallel multi‐objective optimization framework. It is shown how multi‐objective optimization can be used to empirically test for independence between distinct scoring functions. The loss of selection pressure during the evolution of a population of putative peptide sequences by a Pareto‐driven genetic algorithm is addressed by alternating between two definitions of fitness according to a numerical threshold. Copyright © 2005 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.953</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>ALGORITHMS ; BASIC BIOLOGICAL SCIENCES ; computational biology ; data-intensive computation ; DISSOCIATION ; Environmental Molecular Sciences Laboratory ; genetic algorithms ; GENETICS ; MASS SPECTROSCOPY ; multiobjective optimization ; numerical optimization ; OPTIMIZATION ; parallel computing ; peptide identification ; PEPTIDES ; Proteomics ; tandem mass spectrometry</subject><ispartof>Concurrency and Computation. Practice & Experience, 2005-12, Vol.17 (14), p.1687-1704</ispartof><rights>Copyright © 2005 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3563-e4c1051e81c4e1b23f70edd156ead1311e7c7e2eba371e03f1f0899c63e0ff453</citedby><cites>FETCH-LOGICAL-c3563-e4c1051e81c4e1b23f70edd156ead1311e7c7e2eba371e03f1f0899c63e0ff453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.953$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.953$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/876881$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Malard, J. M.</creatorcontrib><creatorcontrib>Heredia-Langner, A.</creatorcontrib><creatorcontrib>Cannon, W. R.</creatorcontrib><creatorcontrib>Mooney, R.</creatorcontrib><creatorcontrib>Baxter, D. J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms</title><title>Concurrency and Computation. Practice & Experience</title><addtitle>Concurrency Computat.: Pract. Exper</addtitle><description>Automatic peptide identification from collision‐induced dissociation tandem mass spectrometry data using optimization techniques is made difficult by large plateaus in the fitness landscapes of scoring functions, by the fuzzy nature of constraints from noisy data and by the existence of diverse but equally justifiable probabilistic models of peak matching. Here, two different scoring functions are combined into a parallel multi‐objective optimization framework. It is shown how multi‐objective optimization can be used to empirically test for independence between distinct scoring functions. The loss of selection pressure during the evolution of a population of putative peptide sequences by a Pareto‐driven genetic algorithm is addressed by alternating between two definitions of fitness according to a numerical threshold. Copyright © 2005 John Wiley & Sons, Ltd.</description><subject>ALGORITHMS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>computational biology</subject><subject>data-intensive computation</subject><subject>DISSOCIATION</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>genetic algorithms</subject><subject>GENETICS</subject><subject>MASS SPECTROSCOPY</subject><subject>multiobjective optimization</subject><subject>numerical optimization</subject><subject>OPTIMIZATION</subject><subject>parallel computing</subject><subject>peptide identification</subject><subject>PEPTIDES</subject><subject>Proteomics</subject><subject>tandem mass spectrometry</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp10E1PwzAMBuAKgQQMxF8oFzigjrjp17ihaQwQgh0GHKMsdYehbUaSDcavJ6OIG4fIOTy27DcIjoD1gbH4XC2wP0j5VrAHKY8jlvFk--8fZ7vBvrWvjAEwDntBOcGFoxJD_1pHFSnpSLfhimSodGudkdRiGTbL2lGkZ6-oHK0w1L6roa8ffBFOpEGno5m0ns6xRUcqlPVcG3IvjT0IdipZWzz8rb3g8Wo0HV5Hdw_jm-HlXaR4mvEIEwUsBSxAJQizmFc5w7KENENZAgfAXOUY40zyHJDxCipWDAYq48iqKkl5Lzju5mrrSFhFDtWLv6L1S4siz4oCvDnpzMLo9yVaJxqyCutatqiXVsQFKxgkG3jaQWW0tQYrsTDUSLMWwMQmaeGTFj5pL886-UE1rv9jYjgZdTrqNFmHn39amjeR5TxPxfP9WEzh9t5HMRBP_BtK-Y9_</recordid><startdate>20051210</startdate><enddate>20051210</enddate><creator>Malard, J. M.</creator><creator>Heredia-Langner, A.</creator><creator>Cannon, W. R.</creator><creator>Mooney, R.</creator><creator>Baxter, D. J.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20051210</creationdate><title>Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms</title><author>Malard, J. M. ; Heredia-Langner, A. ; Cannon, W. R. ; Mooney, R. ; Baxter, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3563-e4c1051e81c4e1b23f70edd156ead1311e7c7e2eba371e03f1f0899c63e0ff453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ALGORITHMS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>computational biology</topic><topic>data-intensive computation</topic><topic>DISSOCIATION</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>genetic algorithms</topic><topic>GENETICS</topic><topic>MASS SPECTROSCOPY</topic><topic>multiobjective optimization</topic><topic>numerical optimization</topic><topic>OPTIMIZATION</topic><topic>parallel computing</topic><topic>peptide identification</topic><topic>PEPTIDES</topic><topic>Proteomics</topic><topic>tandem mass spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malard, J. M.</creatorcontrib><creatorcontrib>Heredia-Langner, A.</creatorcontrib><creatorcontrib>Cannon, W. R.</creatorcontrib><creatorcontrib>Mooney, R.</creatorcontrib><creatorcontrib>Baxter, D. J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Concurrency and Computation. Practice & Experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malard, J. M.</au><au>Heredia-Langner, A.</au><au>Cannon, W. R.</au><au>Mooney, R.</au><au>Baxter, D. J.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms</atitle><jtitle>Concurrency and Computation. Practice & Experience</jtitle><addtitle>Concurrency Computat.: Pract. Exper</addtitle><date>2005-12-10</date><risdate>2005</risdate><volume>17</volume><issue>14</issue><spage>1687</spage><epage>1704</epage><pages>1687-1704</pages><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Automatic peptide identification from collision‐induced dissociation tandem mass spectrometry data using optimization techniques is made difficult by large plateaus in the fitness landscapes of scoring functions, by the fuzzy nature of constraints from noisy data and by the existence of diverse but equally justifiable probabilistic models of peak matching. Here, two different scoring functions are combined into a parallel multi‐objective optimization framework. It is shown how multi‐objective optimization can be used to empirically test for independence between distinct scoring functions. The loss of selection pressure during the evolution of a population of putative peptide sequences by a Pareto‐driven genetic algorithm is addressed by alternating between two definitions of fitness according to a numerical threshold. Copyright © 2005 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/cpe.953</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and Computation. Practice & Experience, 2005-12, Vol.17 (14), p.1687-1704 |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_miscellaneous_28080141 |
source | Wiley-Blackwell Journals |
subjects | ALGORITHMS BASIC BIOLOGICAL SCIENCES computational biology data-intensive computation DISSOCIATION Environmental Molecular Sciences Laboratory genetic algorithms GENETICS MASS SPECTROSCOPY multiobjective optimization numerical optimization OPTIMIZATION parallel computing peptide identification PEPTIDES Proteomics tandem mass spectrometry |
title | Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peptide%20identification%20via%20constrained%20multi-objective%20optimization:%20Pareto-based%20genetic%20algorithms&rft.jtitle=Concurrency%20and%20Computation.%20Practice%20&%20Experience&rft.au=Malard,%20J.%20M.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2005-12-10&rft.volume=17&rft.issue=14&rft.spage=1687&rft.epage=1704&rft.pages=1687-1704&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.953&rft_dat=%3Cproquest_osti_%3E28080141%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28080141&rft_id=info:pmid/&rfr_iscdi=true |