Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms

Automatic peptide identification from collision‐induced dissociation tandem mass spectrometry data using optimization techniques is made difficult by large plateaus in the fitness landscapes of scoring functions, by the fuzzy nature of constraints from noisy data and by the existence of diverse but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and Computation. Practice & Experience 2005-12, Vol.17 (14), p.1687-1704
Hauptverfasser: Malard, J. M., Heredia-Langner, A., Cannon, W. R., Mooney, R., Baxter, D. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1704
container_issue 14
container_start_page 1687
container_title Concurrency and Computation. Practice & Experience
container_volume 17
creator Malard, J. M.
Heredia-Langner, A.
Cannon, W. R.
Mooney, R.
Baxter, D. J.
description Automatic peptide identification from collision‐induced dissociation tandem mass spectrometry data using optimization techniques is made difficult by large plateaus in the fitness landscapes of scoring functions, by the fuzzy nature of constraints from noisy data and by the existence of diverse but equally justifiable probabilistic models of peak matching. Here, two different scoring functions are combined into a parallel multi‐objective optimization framework. It is shown how multi‐objective optimization can be used to empirically test for independence between distinct scoring functions. The loss of selection pressure during the evolution of a population of putative peptide sequences by a Pareto‐driven genetic algorithm is addressed by alternating between two definitions of fitness according to a numerical threshold. Copyright © 2005 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cpe.953
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28080141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28080141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3563-e4c1051e81c4e1b23f70edd156ead1311e7c7e2eba371e03f1f0899c63e0ff453</originalsourceid><addsrcrecordid>eNp10E1PwzAMBuAKgQQMxF8oFzigjrjp17ihaQwQgh0GHKMsdYehbUaSDcavJ6OIG4fIOTy27DcIjoD1gbH4XC2wP0j5VrAHKY8jlvFk--8fZ7vBvrWvjAEwDntBOcGFoxJD_1pHFSnpSLfhimSodGudkdRiGTbL2lGkZ6-oHK0w1L6roa8ffBFOpEGno5m0ns6xRUcqlPVcG3IvjT0IdipZWzz8rb3g8Wo0HV5Hdw_jm-HlXaR4mvEIEwUsBSxAJQizmFc5w7KENENZAgfAXOUY40zyHJDxCipWDAYq48iqKkl5Lzju5mrrSFhFDtWLv6L1S4siz4oCvDnpzMLo9yVaJxqyCutatqiXVsQFKxgkG3jaQWW0tQYrsTDUSLMWwMQmaeGTFj5pL886-UE1rv9jYjgZdTrqNFmHn39amjeR5TxPxfP9WEzh9t5HMRBP_BtK-Y9_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28080141</pqid></control><display><type>article</type><title>Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms</title><source>Wiley-Blackwell Journals</source><creator>Malard, J. M. ; Heredia-Langner, A. ; Cannon, W. R. ; Mooney, R. ; Baxter, D. J.</creator><creatorcontrib>Malard, J. M. ; Heredia-Langner, A. ; Cannon, W. R. ; Mooney, R. ; Baxter, D. J. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Automatic peptide identification from collision‐induced dissociation tandem mass spectrometry data using optimization techniques is made difficult by large plateaus in the fitness landscapes of scoring functions, by the fuzzy nature of constraints from noisy data and by the existence of diverse but equally justifiable probabilistic models of peak matching. Here, two different scoring functions are combined into a parallel multi‐objective optimization framework. It is shown how multi‐objective optimization can be used to empirically test for independence between distinct scoring functions. The loss of selection pressure during the evolution of a population of putative peptide sequences by a Pareto‐driven genetic algorithm is addressed by alternating between two definitions of fitness according to a numerical threshold. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.953</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>ALGORITHMS ; BASIC BIOLOGICAL SCIENCES ; computational biology ; data-intensive computation ; DISSOCIATION ; Environmental Molecular Sciences Laboratory ; genetic algorithms ; GENETICS ; MASS SPECTROSCOPY ; multiobjective optimization ; numerical optimization ; OPTIMIZATION ; parallel computing ; peptide identification ; PEPTIDES ; Proteomics ; tandem mass spectrometry</subject><ispartof>Concurrency and Computation. Practice &amp; Experience, 2005-12, Vol.17 (14), p.1687-1704</ispartof><rights>Copyright © 2005 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3563-e4c1051e81c4e1b23f70edd156ead1311e7c7e2eba371e03f1f0899c63e0ff453</citedby><cites>FETCH-LOGICAL-c3563-e4c1051e81c4e1b23f70edd156ead1311e7c7e2eba371e03f1f0899c63e0ff453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.953$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.953$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/876881$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Malard, J. M.</creatorcontrib><creatorcontrib>Heredia-Langner, A.</creatorcontrib><creatorcontrib>Cannon, W. R.</creatorcontrib><creatorcontrib>Mooney, R.</creatorcontrib><creatorcontrib>Baxter, D. J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms</title><title>Concurrency and Computation. Practice &amp; Experience</title><addtitle>Concurrency Computat.: Pract. Exper</addtitle><description>Automatic peptide identification from collision‐induced dissociation tandem mass spectrometry data using optimization techniques is made difficult by large plateaus in the fitness landscapes of scoring functions, by the fuzzy nature of constraints from noisy data and by the existence of diverse but equally justifiable probabilistic models of peak matching. Here, two different scoring functions are combined into a parallel multi‐objective optimization framework. It is shown how multi‐objective optimization can be used to empirically test for independence between distinct scoring functions. The loss of selection pressure during the evolution of a population of putative peptide sequences by a Pareto‐driven genetic algorithm is addressed by alternating between two definitions of fitness according to a numerical threshold. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><subject>ALGORITHMS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>computational biology</subject><subject>data-intensive computation</subject><subject>DISSOCIATION</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>genetic algorithms</subject><subject>GENETICS</subject><subject>MASS SPECTROSCOPY</subject><subject>multiobjective optimization</subject><subject>numerical optimization</subject><subject>OPTIMIZATION</subject><subject>parallel computing</subject><subject>peptide identification</subject><subject>PEPTIDES</subject><subject>Proteomics</subject><subject>tandem mass spectrometry</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp10E1PwzAMBuAKgQQMxF8oFzigjrjp17ihaQwQgh0GHKMsdYehbUaSDcavJ6OIG4fIOTy27DcIjoD1gbH4XC2wP0j5VrAHKY8jlvFk--8fZ7vBvrWvjAEwDntBOcGFoxJD_1pHFSnpSLfhimSodGudkdRiGTbL2lGkZ6-oHK0w1L6roa8ffBFOpEGno5m0ns6xRUcqlPVcG3IvjT0IdipZWzz8rb3g8Wo0HV5Hdw_jm-HlXaR4mvEIEwUsBSxAJQizmFc5w7KENENZAgfAXOUY40zyHJDxCipWDAYq48iqKkl5Lzju5mrrSFhFDtWLv6L1S4siz4oCvDnpzMLo9yVaJxqyCutatqiXVsQFKxgkG3jaQWW0tQYrsTDUSLMWwMQmaeGTFj5pL886-UE1rv9jYjgZdTrqNFmHn39amjeR5TxPxfP9WEzh9t5HMRBP_BtK-Y9_</recordid><startdate>20051210</startdate><enddate>20051210</enddate><creator>Malard, J. M.</creator><creator>Heredia-Langner, A.</creator><creator>Cannon, W. R.</creator><creator>Mooney, R.</creator><creator>Baxter, D. J.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20051210</creationdate><title>Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms</title><author>Malard, J. M. ; Heredia-Langner, A. ; Cannon, W. R. ; Mooney, R. ; Baxter, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3563-e4c1051e81c4e1b23f70edd156ead1311e7c7e2eba371e03f1f0899c63e0ff453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ALGORITHMS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>computational biology</topic><topic>data-intensive computation</topic><topic>DISSOCIATION</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>genetic algorithms</topic><topic>GENETICS</topic><topic>MASS SPECTROSCOPY</topic><topic>multiobjective optimization</topic><topic>numerical optimization</topic><topic>OPTIMIZATION</topic><topic>parallel computing</topic><topic>peptide identification</topic><topic>PEPTIDES</topic><topic>Proteomics</topic><topic>tandem mass spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malard, J. M.</creatorcontrib><creatorcontrib>Heredia-Langner, A.</creatorcontrib><creatorcontrib>Cannon, W. R.</creatorcontrib><creatorcontrib>Mooney, R.</creatorcontrib><creatorcontrib>Baxter, D. J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Concurrency and Computation. Practice &amp; Experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malard, J. M.</au><au>Heredia-Langner, A.</au><au>Cannon, W. R.</au><au>Mooney, R.</au><au>Baxter, D. J.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms</atitle><jtitle>Concurrency and Computation. Practice &amp; Experience</jtitle><addtitle>Concurrency Computat.: Pract. Exper</addtitle><date>2005-12-10</date><risdate>2005</risdate><volume>17</volume><issue>14</issue><spage>1687</spage><epage>1704</epage><pages>1687-1704</pages><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Automatic peptide identification from collision‐induced dissociation tandem mass spectrometry data using optimization techniques is made difficult by large plateaus in the fitness landscapes of scoring functions, by the fuzzy nature of constraints from noisy data and by the existence of diverse but equally justifiable probabilistic models of peak matching. Here, two different scoring functions are combined into a parallel multi‐objective optimization framework. It is shown how multi‐objective optimization can be used to empirically test for independence between distinct scoring functions. The loss of selection pressure during the evolution of a population of putative peptide sequences by a Pareto‐driven genetic algorithm is addressed by alternating between two definitions of fitness according to a numerical threshold. Copyright © 2005 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cpe.953</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and Computation. Practice & Experience, 2005-12, Vol.17 (14), p.1687-1704
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_miscellaneous_28080141
source Wiley-Blackwell Journals
subjects ALGORITHMS
BASIC BIOLOGICAL SCIENCES
computational biology
data-intensive computation
DISSOCIATION
Environmental Molecular Sciences Laboratory
genetic algorithms
GENETICS
MASS SPECTROSCOPY
multiobjective optimization
numerical optimization
OPTIMIZATION
parallel computing
peptide identification
PEPTIDES
Proteomics
tandem mass spectrometry
title Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peptide%20identification%20via%20constrained%20multi-objective%20optimization:%20Pareto-based%20genetic%20algorithms&rft.jtitle=Concurrency%20and%20Computation.%20Practice%20&%20Experience&rft.au=Malard,%20J.%20M.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2005-12-10&rft.volume=17&rft.issue=14&rft.spage=1687&rft.epage=1704&rft.pages=1687-1704&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.953&rft_dat=%3Cproquest_osti_%3E28080141%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28080141&rft_id=info:pmid/&rfr_iscdi=true