Path-based distribution network modeling: application to reconfiguration for loss reduction

This paper is devoted to efficiently modeling the connectivity of distribution networks, which are structurally meshed but radially operated. A new approach, based on the "path-to-node" concept, is presented, allowing both topological and electrical constraints to be algebraically formulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2005-05, Vol.20 (2), p.556-564
Hauptverfasser: Ramos, E.R., Exposito, A.G., Santos, J.R., Iborra, F.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 2
container_start_page 556
container_title IEEE transactions on power systems
container_volume 20
creator Ramos, E.R.
Exposito, A.G.
Santos, J.R.
Iborra, F.L.
description This paper is devoted to efficiently modeling the connectivity of distribution networks, which are structurally meshed but radially operated. A new approach, based on the "path-to-node" concept, is presented, allowing both topological and electrical constraints to be algebraically formulated before the actual radial configuration is determined. In order to illustrate the possibilities of the proposed framework, the problem of network reconfiguration for power loss reduction is considered. Two different optimization algorithms-one resorting to a genetic algorithm and the other solving a conventional mixed-integer linear problem-are fully developed. The validity and effectiveness of the path-based distribution network modeling are demonstrated on different test systems.
doi_str_mv 10.1109/TPWRS.2005.846212
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28079368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1425545</ieee_id><sourcerecordid>28079368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-f8bc8543b8a82f75ed3dee1c7929dee49df2be6859658d7bb02e781f2118e323</originalsourceid><addsrcrecordid>eNp9kc1LxDAQxYMouK7-AeKleNBT1yRt0ok3WfyCBRdd8OAh9GO6Zu02a9Ii_vdmrSB48DTDvN8beDxCjhmdMEbVxWL-_Pg04ZSKCaSSM75DRkwIiKnM1C4ZUQARgxJ0nxx4v6KUyiCMyMs8717jIvdYRZXxnTNF3xnbRi12H9a9RWtbYWPa5WWUbzaNKfNvtbORw9K2tVn2bjjV1kWN9T4IVV9uT4dkr84bj0c_c0wWN9eL6V08e7i9n17N4jLlrItrKEoQaVJADrzOBFZJhcjKTHEVllRVNS9QglBSQJUVBeWYAas5Y4AJT8bkfHi7cfa9R9_ptfElNk3eou29BiWZVDyRgTz7l-RAM5VICODpH3Ble9eGEBqkopBSlgWIDVDpQmyHtd44s87dp2ZUb0vR36XobSl6KCV4TgaPQcRfPuVCpCL5Akktih8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869084017</pqid></control><display><type>article</type><title>Path-based distribution network modeling: application to reconfiguration for loss reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Ramos, E.R. ; Exposito, A.G. ; Santos, J.R. ; Iborra, F.L.</creator><creatorcontrib>Ramos, E.R. ; Exposito, A.G. ; Santos, J.R. ; Iborra, F.L.</creatorcontrib><description>This paper is devoted to efficiently modeling the connectivity of distribution networks, which are structurally meshed but radially operated. A new approach, based on the "path-to-node" concept, is presented, allowing both topological and electrical constraints to be algebraically formulated before the actual radial configuration is determined. In order to illustrate the possibilities of the proposed framework, the problem of network reconfiguration for power loss reduction is considered. Two different optimization algorithms-one resorting to a genetic algorithm and the other solving a conventional mixed-integer linear problem-are fully developed. The validity and effectiveness of the path-based distribution network modeling are demonstrated on different test systems.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2005.846212</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Cost function ; Distribution networks ; Electric power generation ; Fuzzy logic ; genetic algorithm ; Genetic algorithms ; loss minimization ; Minimization methods ; network reconfiguration ; Networks ; Optimization ; Power loss ; Power system modeling ; Reconfiguration ; Reduction ; Simulated annealing ; Substations ; System testing</subject><ispartof>IEEE transactions on power systems, 2005-05, Vol.20 (2), p.556-564</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-f8bc8543b8a82f75ed3dee1c7929dee49df2be6859658d7bb02e781f2118e323</citedby><cites>FETCH-LOGICAL-c421t-f8bc8543b8a82f75ed3dee1c7929dee49df2be6859658d7bb02e781f2118e323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1425545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1425545$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramos, E.R.</creatorcontrib><creatorcontrib>Exposito, A.G.</creatorcontrib><creatorcontrib>Santos, J.R.</creatorcontrib><creatorcontrib>Iborra, F.L.</creatorcontrib><title>Path-based distribution network modeling: application to reconfiguration for loss reduction</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper is devoted to efficiently modeling the connectivity of distribution networks, which are structurally meshed but radially operated. A new approach, based on the "path-to-node" concept, is presented, allowing both topological and electrical constraints to be algebraically formulated before the actual radial configuration is determined. In order to illustrate the possibilities of the proposed framework, the problem of network reconfiguration for power loss reduction is considered. Two different optimization algorithms-one resorting to a genetic algorithm and the other solving a conventional mixed-integer linear problem-are fully developed. The validity and effectiveness of the path-based distribution network modeling are demonstrated on different test systems.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Cost function</subject><subject>Distribution networks</subject><subject>Electric power generation</subject><subject>Fuzzy logic</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>loss minimization</subject><subject>Minimization methods</subject><subject>network reconfiguration</subject><subject>Networks</subject><subject>Optimization</subject><subject>Power loss</subject><subject>Power system modeling</subject><subject>Reconfiguration</subject><subject>Reduction</subject><subject>Simulated annealing</subject><subject>Substations</subject><subject>System testing</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1LxDAQxYMouK7-AeKleNBT1yRt0ok3WfyCBRdd8OAh9GO6Zu02a9Ii_vdmrSB48DTDvN8beDxCjhmdMEbVxWL-_Pg04ZSKCaSSM75DRkwIiKnM1C4ZUQARgxJ0nxx4v6KUyiCMyMs8717jIvdYRZXxnTNF3xnbRi12H9a9RWtbYWPa5WWUbzaNKfNvtbORw9K2tVn2bjjV1kWN9T4IVV9uT4dkr84bj0c_c0wWN9eL6V08e7i9n17N4jLlrItrKEoQaVJADrzOBFZJhcjKTHEVllRVNS9QglBSQJUVBeWYAas5Y4AJT8bkfHi7cfa9R9_ptfElNk3eou29BiWZVDyRgTz7l-RAM5VICODpH3Ble9eGEBqkopBSlgWIDVDpQmyHtd44s87dp2ZUb0vR36XobSl6KCV4TgaPQcRfPuVCpCL5Akktih8</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Ramos, E.R.</creator><creator>Exposito, A.G.</creator><creator>Santos, J.R.</creator><creator>Iborra, F.L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20050501</creationdate><title>Path-based distribution network modeling: application to reconfiguration for loss reduction</title><author>Ramos, E.R. ; Exposito, A.G. ; Santos, J.R. ; Iborra, F.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-f8bc8543b8a82f75ed3dee1c7929dee49df2be6859658d7bb02e781f2118e323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Cost function</topic><topic>Distribution networks</topic><topic>Electric power generation</topic><topic>Fuzzy logic</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>loss minimization</topic><topic>Minimization methods</topic><topic>network reconfiguration</topic><topic>Networks</topic><topic>Optimization</topic><topic>Power loss</topic><topic>Power system modeling</topic><topic>Reconfiguration</topic><topic>Reduction</topic><topic>Simulated annealing</topic><topic>Substations</topic><topic>System testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, E.R.</creatorcontrib><creatorcontrib>Exposito, A.G.</creatorcontrib><creatorcontrib>Santos, J.R.</creatorcontrib><creatorcontrib>Iborra, F.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramos, E.R.</au><au>Exposito, A.G.</au><au>Santos, J.R.</au><au>Iborra, F.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path-based distribution network modeling: application to reconfiguration for loss reduction</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2005-05-01</date><risdate>2005</risdate><volume>20</volume><issue>2</issue><spage>556</spage><epage>564</epage><pages>556-564</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper is devoted to efficiently modeling the connectivity of distribution networks, which are structurally meshed but radially operated. A new approach, based on the "path-to-node" concept, is presented, allowing both topological and electrical constraints to be algebraically formulated before the actual radial configuration is determined. In order to illustrate the possibilities of the proposed framework, the problem of network reconfiguration for power loss reduction is considered. Two different optimization algorithms-one resorting to a genetic algorithm and the other solving a conventional mixed-integer linear problem-are fully developed. The validity and effectiveness of the path-based distribution network modeling are demonstrated on different test systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2005.846212</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2005-05, Vol.20 (2), p.556-564
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_28079368
source IEEE Electronic Library (IEL)
subjects Algebra
Algorithms
Artificial intelligence
Artificial neural networks
Cost function
Distribution networks
Electric power generation
Fuzzy logic
genetic algorithm
Genetic algorithms
loss minimization
Minimization methods
network reconfiguration
Networks
Optimization
Power loss
Power system modeling
Reconfiguration
Reduction
Simulated annealing
Substations
System testing
title Path-based distribution network modeling: application to reconfiguration for loss reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path-based%20distribution%20network%20modeling:%20application%20to%20reconfiguration%20for%20loss%20reduction&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Ramos,%20E.R.&rft.date=2005-05-01&rft.volume=20&rft.issue=2&rft.spage=556&rft.epage=564&rft.pages=556-564&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2005.846212&rft_dat=%3Cproquest_RIE%3E28079368%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869084017&rft_id=info:pmid/&rft_ieee_id=1425545&rfr_iscdi=true