The signal conversion strategy using the lytic transglycosylase Cag4-double nanoporous gold co-catalysis for the rapid screening of drugs against Helicobacter pylori infection

The cag pathogenicity island (cagPAI) is the main virulence factor of gastric carcinoma induced by Helicobacter pylori (H. pylori). The lytic transglycosylase Cag4 is an important component that assists in the translocation of the bacterial oncoprotein CagA and maintains the peptidoglycan cycle. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2023-08, Vol.233, p.115345-115345, Article 115345
Hauptverfasser: Xiao, Sa, Zhang, Lei, Wang, Xiaolei, Li, Wenjuan, Wang, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115345
container_issue
container_start_page 115345
container_title Biosensors & bioelectronics
container_volume 233
creator Xiao, Sa
Zhang, Lei
Wang, Xiaolei
Li, Wenjuan
Wang, Xia
description The cag pathogenicity island (cagPAI) is the main virulence factor of gastric carcinoma induced by Helicobacter pylori (H. pylori). The lytic transglycosylase Cag4 is an important component that assists in the translocation of the bacterial oncoprotein CagA and maintains the peptidoglycan cycle. The allosteric regulation of Cag4 has been preliminarily demonstrated to inhibit H. pylori infection. Unfortunately, a rapid screening technology for allosteric regulators of Cag4 has not been established. In this study, a novel Cag4-double nanoporous gold (NPG) biosensor based on enzyme-inorganic co-catalysis was constructed using the heterologously expressed H. pylori 26695 Cag4 as the biological recognition element for screening Cag4 allosteric regulators. The results showed that chitosan or carboxymethyl chitosan was a mixed Cag4 inhibitor combining non-competition with uncompetition. The inhibition constants were Ki' Chitosan = 0.88909 mg/mL and Ki' Carboxymethyl chitosan = 1.13480 mg/mL, respectively. Surprisingly, D-(+)-cellobiose showed the activation effect of Cag4 on E. coli MG1655 cell wall lysis by decreasing the Ka value by 29.7% and increasing the Vmax value by 71.3%. In addition, molecular docking revealed the importance of the polarity of the C2 substituent group with glucose as the main structure in the Cag4 allosteric regulator. This study provides a fast and useful platform for screening potential new drugs based on the Cag4 allosteric regulator.
doi_str_mv 10.1016/j.bios.2023.115345
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2807928106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566323002877</els_id><sourcerecordid>2807928106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a77f2567a9e91c4e710473a2cfba14e3a370a9de6a1dc51ae3166fb52d13c2113</originalsourceid><addsrcrecordid>eNp9kU1v1DAQQCMEokvhD3BAPnLJ1h-JvZG4oFWhlSpxKWdrYk-CV1578SSV8qv4i2TZwpGTJevNk8evqt4LvhVc6JvDtg-ZtpJLtRWiVU37otqInVF1I1X7strwrtV1q7W6qt4QHTjnRnT8dXWljBBaNrtN9evxBzIKY4LIXE5PWCjkxGgqMOG4sJlCGtm0QnGZgmPrfaIxLi7TEoGQ7WFsap_nPiJLkPIplzwTG3P0q7B2MEFcKBAbcvnjKXAKnpEriOnszgPzZR6JwQgh0cTuMAaXe3ATFnZaYi6BhTSgm9aXva1eDRAJ3z2f19X3L7eP-7v64dvX-_3nh9qpVk81GDPIVhvosBOuQSN4YxRIN_QgGlSgDIfOowbhXSsAldB66FvphXJSCHVdfbx4TyX_nJEmewzkMEZIuO5n5Y6bTu4E1ysqL6grmajgYE8lHKEsVnB7DmUP9hzKnkPZS6h16MOzf-6P6P-N_C2zAp8uAK5bPgUsllzA5NCHsn6F9Tn8z_8bA8KpTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807928106</pqid></control><display><type>article</type><title>The signal conversion strategy using the lytic transglycosylase Cag4-double nanoporous gold co-catalysis for the rapid screening of drugs against Helicobacter pylori infection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Xiao, Sa ; Zhang, Lei ; Wang, Xiaolei ; Li, Wenjuan ; Wang, Xia</creator><creatorcontrib>Xiao, Sa ; Zhang, Lei ; Wang, Xiaolei ; Li, Wenjuan ; Wang, Xia</creatorcontrib><description>The cag pathogenicity island (cagPAI) is the main virulence factor of gastric carcinoma induced by Helicobacter pylori (H. pylori). The lytic transglycosylase Cag4 is an important component that assists in the translocation of the bacterial oncoprotein CagA and maintains the peptidoglycan cycle. The allosteric regulation of Cag4 has been preliminarily demonstrated to inhibit H. pylori infection. Unfortunately, a rapid screening technology for allosteric regulators of Cag4 has not been established. In this study, a novel Cag4-double nanoporous gold (NPG) biosensor based on enzyme-inorganic co-catalysis was constructed using the heterologously expressed H. pylori 26695 Cag4 as the biological recognition element for screening Cag4 allosteric regulators. The results showed that chitosan or carboxymethyl chitosan was a mixed Cag4 inhibitor combining non-competition with uncompetition. The inhibition constants were Ki' Chitosan = 0.88909 mg/mL and Ki' Carboxymethyl chitosan = 1.13480 mg/mL, respectively. Surprisingly, D-(+)-cellobiose showed the activation effect of Cag4 on E. coli MG1655 cell wall lysis by decreasing the Ka value by 29.7% and increasing the Vmax value by 71.3%. In addition, molecular docking revealed the importance of the polarity of the C2 substituent group with glucose as the main structure in the Cag4 allosteric regulator. This study provides a fast and useful platform for screening potential new drugs based on the Cag4 allosteric regulator.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2023.115345</identifier><identifier>PMID: 37116248</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Allosteric regulation ; Antigens, Bacterial ; Bacterial Proteins ; Biosensing Techniques ; Cag pathogenicity island ; Chitosan ; Escherichia coli ; Helicobacter Infections - microbiology ; Helicobacter pylori ; Humans ; Lytic transglycosylases ; Molecular Docking Simulation ; Nanopores</subject><ispartof>Biosensors &amp; bioelectronics, 2023-08, Vol.233, p.115345-115345, Article 115345</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-a77f2567a9e91c4e710473a2cfba14e3a370a9de6a1dc51ae3166fb52d13c2113</citedby><cites>FETCH-LOGICAL-c356t-a77f2567a9e91c4e710473a2cfba14e3a370a9de6a1dc51ae3166fb52d13c2113</cites><orcidid>0000-0001-5787-2983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566323002877$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37116248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Li, Wenjuan</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><title>The signal conversion strategy using the lytic transglycosylase Cag4-double nanoporous gold co-catalysis for the rapid screening of drugs against Helicobacter pylori infection</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>The cag pathogenicity island (cagPAI) is the main virulence factor of gastric carcinoma induced by Helicobacter pylori (H. pylori). The lytic transglycosylase Cag4 is an important component that assists in the translocation of the bacterial oncoprotein CagA and maintains the peptidoglycan cycle. The allosteric regulation of Cag4 has been preliminarily demonstrated to inhibit H. pylori infection. Unfortunately, a rapid screening technology for allosteric regulators of Cag4 has not been established. In this study, a novel Cag4-double nanoporous gold (NPG) biosensor based on enzyme-inorganic co-catalysis was constructed using the heterologously expressed H. pylori 26695 Cag4 as the biological recognition element for screening Cag4 allosteric regulators. The results showed that chitosan or carboxymethyl chitosan was a mixed Cag4 inhibitor combining non-competition with uncompetition. The inhibition constants were Ki' Chitosan = 0.88909 mg/mL and Ki' Carboxymethyl chitosan = 1.13480 mg/mL, respectively. Surprisingly, D-(+)-cellobiose showed the activation effect of Cag4 on E. coli MG1655 cell wall lysis by decreasing the Ka value by 29.7% and increasing the Vmax value by 71.3%. In addition, molecular docking revealed the importance of the polarity of the C2 substituent group with glucose as the main structure in the Cag4 allosteric regulator. This study provides a fast and useful platform for screening potential new drugs based on the Cag4 allosteric regulator.</description><subject>Allosteric regulation</subject><subject>Antigens, Bacterial</subject><subject>Bacterial Proteins</subject><subject>Biosensing Techniques</subject><subject>Cag pathogenicity island</subject><subject>Chitosan</subject><subject>Escherichia coli</subject><subject>Helicobacter Infections - microbiology</subject><subject>Helicobacter pylori</subject><subject>Humans</subject><subject>Lytic transglycosylases</subject><subject>Molecular Docking Simulation</subject><subject>Nanopores</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQQCMEokvhD3BAPnLJ1h-JvZG4oFWhlSpxKWdrYk-CV1578SSV8qv4i2TZwpGTJevNk8evqt4LvhVc6JvDtg-ZtpJLtRWiVU37otqInVF1I1X7strwrtV1q7W6qt4QHTjnRnT8dXWljBBaNrtN9evxBzIKY4LIXE5PWCjkxGgqMOG4sJlCGtm0QnGZgmPrfaIxLi7TEoGQ7WFsap_nPiJLkPIplzwTG3P0q7B2MEFcKBAbcvnjKXAKnpEriOnszgPzZR6JwQgh0cTuMAaXe3ATFnZaYi6BhTSgm9aXva1eDRAJ3z2f19X3L7eP-7v64dvX-_3nh9qpVk81GDPIVhvosBOuQSN4YxRIN_QgGlSgDIfOowbhXSsAldB66FvphXJSCHVdfbx4TyX_nJEmewzkMEZIuO5n5Y6bTu4E1ysqL6grmajgYE8lHKEsVnB7DmUP9hzKnkPZS6h16MOzf-6P6P-N_C2zAp8uAK5bPgUsllzA5NCHsn6F9Tn8z_8bA8KpTg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Xiao, Sa</creator><creator>Zhang, Lei</creator><creator>Wang, Xiaolei</creator><creator>Li, Wenjuan</creator><creator>Wang, Xia</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5787-2983</orcidid></search><sort><creationdate>20230801</creationdate><title>The signal conversion strategy using the lytic transglycosylase Cag4-double nanoporous gold co-catalysis for the rapid screening of drugs against Helicobacter pylori infection</title><author>Xiao, Sa ; Zhang, Lei ; Wang, Xiaolei ; Li, Wenjuan ; Wang, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a77f2567a9e91c4e710473a2cfba14e3a370a9de6a1dc51ae3166fb52d13c2113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Allosteric regulation</topic><topic>Antigens, Bacterial</topic><topic>Bacterial Proteins</topic><topic>Biosensing Techniques</topic><topic>Cag pathogenicity island</topic><topic>Chitosan</topic><topic>Escherichia coli</topic><topic>Helicobacter Infections - microbiology</topic><topic>Helicobacter pylori</topic><topic>Humans</topic><topic>Lytic transglycosylases</topic><topic>Molecular Docking Simulation</topic><topic>Nanopores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Li, Wenjuan</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Sa</au><au>Zhang, Lei</au><au>Wang, Xiaolei</au><au>Li, Wenjuan</au><au>Wang, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The signal conversion strategy using the lytic transglycosylase Cag4-double nanoporous gold co-catalysis for the rapid screening of drugs against Helicobacter pylori infection</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>233</volume><spage>115345</spage><epage>115345</epage><pages>115345-115345</pages><artnum>115345</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>The cag pathogenicity island (cagPAI) is the main virulence factor of gastric carcinoma induced by Helicobacter pylori (H. pylori). The lytic transglycosylase Cag4 is an important component that assists in the translocation of the bacterial oncoprotein CagA and maintains the peptidoglycan cycle. The allosteric regulation of Cag4 has been preliminarily demonstrated to inhibit H. pylori infection. Unfortunately, a rapid screening technology for allosteric regulators of Cag4 has not been established. In this study, a novel Cag4-double nanoporous gold (NPG) biosensor based on enzyme-inorganic co-catalysis was constructed using the heterologously expressed H. pylori 26695 Cag4 as the biological recognition element for screening Cag4 allosteric regulators. The results showed that chitosan or carboxymethyl chitosan was a mixed Cag4 inhibitor combining non-competition with uncompetition. The inhibition constants were Ki' Chitosan = 0.88909 mg/mL and Ki' Carboxymethyl chitosan = 1.13480 mg/mL, respectively. Surprisingly, D-(+)-cellobiose showed the activation effect of Cag4 on E. coli MG1655 cell wall lysis by decreasing the Ka value by 29.7% and increasing the Vmax value by 71.3%. In addition, molecular docking revealed the importance of the polarity of the C2 substituent group with glucose as the main structure in the Cag4 allosteric regulator. This study provides a fast and useful platform for screening potential new drugs based on the Cag4 allosteric regulator.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>37116248</pmid><doi>10.1016/j.bios.2023.115345</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5787-2983</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2023-08, Vol.233, p.115345-115345, Article 115345
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_2807928106
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Allosteric regulation
Antigens, Bacterial
Bacterial Proteins
Biosensing Techniques
Cag pathogenicity island
Chitosan
Escherichia coli
Helicobacter Infections - microbiology
Helicobacter pylori
Humans
Lytic transglycosylases
Molecular Docking Simulation
Nanopores
title The signal conversion strategy using the lytic transglycosylase Cag4-double nanoporous gold co-catalysis for the rapid screening of drugs against Helicobacter pylori infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T06%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20signal%20conversion%20strategy%20using%20the%20lytic%20transglycosylase%20Cag4-double%20nanoporous%20gold%20co-catalysis%20for%20the%20rapid%20screening%20of%20drugs%20against%20Helicobacter%20pylori%20infection&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Xiao,%20Sa&rft.date=2023-08-01&rft.volume=233&rft.spage=115345&rft.epage=115345&rft.pages=115345-115345&rft.artnum=115345&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2023.115345&rft_dat=%3Cproquest_cross%3E2807928106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807928106&rft_id=info:pmid/37116248&rft_els_id=S0956566323002877&rfr_iscdi=true