Effect of polysaccharides on the rheological behaviour of soy–wheat protein aggregation and conformational changes during high‐moisture extrusion

BACKGROUND Due to the extrusion black box effect, polysaccharides determine the formation of meat‐like fibrous structures by modulating the flow behaviour and structural changes of plant proteins under high‐moisture extrusion conditions. However, there is limited knowledge on the mechanism of resolu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2023-09, Vol.103 (12), p.5992-6004
Hauptverfasser: Wang, Fengqiujie, Lian, Wentao, Gu, Xuelian, Zhang, Haojia, Gao, Yang, Lü, Mingshou, Zhu, Ying, Huang, Yuyang, Sun, Ying, Zhu, Xiuqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6004
container_issue 12
container_start_page 5992
container_title Journal of the science of food and agriculture
container_volume 103
creator Wang, Fengqiujie
Lian, Wentao
Gu, Xuelian
Zhang, Haojia
Gao, Yang
Lü, Mingshou
Zhu, Ying
Huang, Yuyang
Sun, Ying
Zhu, Xiuqing
description BACKGROUND Due to the extrusion black box effect, polysaccharides determine the formation of meat‐like fibrous structures by modulating the flow behaviour and structural changes of plant proteins under high‐moisture extrusion conditions. However, there is limited knowledge on the mechanism of resolution. This study simulated the rheological properties of soy protein–wheat protein under 57% moisture conditions with addition of 4% sodium alginate (SA), 2% xanthan gum (XG), and 2% maltodextrin (MD). The effect of these polysaccharides on the aggregation behaviour and conformation of raw protein during high‐moisture extrusion was investigated. RESULTS It was revealed that the three polysaccharides were effective in increasing the interaction between proteins and between proteins and water. Among them, 4% SA elicited a significantly stronger storage modulus (gelation behaviour) compared to the control. Analysis of different zones of extrudates by protein electrophoresis, particle size, and turbidity showed that SA‐4% was able to form more high molecular protein aggregates (> 245 kDa) and promoted crosslinking of low molecular subunits (
doi_str_mv 10.1002/jsfa.12669
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2807922777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807922777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3939-94333e697f974aa07002a358cc7fb95e1a2961a0b6ce2bafff2db4ef76503a573</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy0EokvhwgMgS1wqpBT_SeL1saraUlSJA3COJs448SqJFzuh7K2PUKniBfskdbqFAwdOlsbffJqZHyFvOTvmjImPm2jhmIuy1M_IijOtMsY4e05W6VNkBc_FAXkV44YxpnVZviQHUnFesJytyO8za9FM1Fu69f0ugjEdBNdgpH6kU4c0dOh73zoDPa2xg5_Oz2Hho9_d39xddwgT3QY_oRsptG3AFiaXmmFsqPGj9WF4LKT-5B7bpG7m4MaWdq7t7m9uB-_iNAek-GsKc0zoa_LCQh_xzdN7SL6fn307_ZRdfbm4PD25yozUUmc6l1JiqZXVKgdgKi0Mslgbo2ytC-QgdMmB1aVBUYO1VjR1jlaVBZNQKHlIjvbeNP-PGeNUDS4a7HsY0c-xEmumtBBKLej7f9BNukNaaqHynDOR83WiPuwpE3yMAW21DW6AsKs4q5awqiWs6jGsBL97Us71gM1f9E86CeB74Nr1uPuPqvr89fxkL30AoY-kbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844102418</pqid></control><display><type>article</type><title>Effect of polysaccharides on the rheological behaviour of soy–wheat protein aggregation and conformational changes during high‐moisture extrusion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Fengqiujie ; Lian, Wentao ; Gu, Xuelian ; Zhang, Haojia ; Gao, Yang ; Lü, Mingshou ; Zhu, Ying ; Huang, Yuyang ; Sun, Ying ; Zhu, Xiuqing</creator><creatorcontrib>Wang, Fengqiujie ; Lian, Wentao ; Gu, Xuelian ; Zhang, Haojia ; Gao, Yang ; Lü, Mingshou ; Zhu, Ying ; Huang, Yuyang ; Sun, Ying ; Zhu, Xiuqing</creatorcontrib><description>BACKGROUND Due to the extrusion black box effect, polysaccharides determine the formation of meat‐like fibrous structures by modulating the flow behaviour and structural changes of plant proteins under high‐moisture extrusion conditions. However, there is limited knowledge on the mechanism of resolution. This study simulated the rheological properties of soy protein–wheat protein under 57% moisture conditions with addition of 4% sodium alginate (SA), 2% xanthan gum (XG), and 2% maltodextrin (MD). The effect of these polysaccharides on the aggregation behaviour and conformation of raw protein during high‐moisture extrusion was investigated. RESULTS It was revealed that the three polysaccharides were effective in increasing the interaction between proteins and between proteins and water. Among them, 4% SA elicited a significantly stronger storage modulus (gelation behaviour) compared to the control. Analysis of different zones of extrudates by protein electrophoresis, particle size, and turbidity showed that SA‐4% was able to form more high molecular protein aggregates (&gt; 245 kDa) and promoted crosslinking of low molecular subunits (&lt; 48 kDa), resulting in moderately sized protein aggregated particles. Fluorescence and ultraviolet spectra showed the transformation of protein tertiary structures in different extrusion zones, confirming that the key extrusion zone for protein conformational transformation by polysaccharides is the die–cooling zone. Furthermore, stretching of polypeptide chains and accelerated protein rearrangement facilitated the formation of more fibrillar structures. CONCLUSION Theoretical support for polysaccharide modulation of plant protein quality in high moisture extruded products is provided by this study. © 2023 Society of Chemical Industry.</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.12669</identifier><identifier>PMID: 37115040</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Aggregation behavior ; Alginic acid ; conformational changes ; Crosslinking ; Electrophoresis ; Extrusion dies ; Extrusions ; high‐moisture extrusion technology ; Maltodextrin ; Moisture effects ; plant protein ; Polypeptides ; Polysaccharides ; protein aggregation behaviour ; Protein interaction ; Protein structure ; Proteins ; Rheological properties ; Rheology ; Saccharides ; Sodium alginate ; Storage modulus ; Turbidity ; Ultraviolet spectra ; Wheat ; Xanthan ; Xanthan gum</subject><ispartof>Journal of the science of food and agriculture, 2023-09, Vol.103 (12), p.5992-6004</ispartof><rights>2023 Society of Chemical Industry.</rights><rights>Copyright © 2023 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3939-94333e697f974aa07002a358cc7fb95e1a2961a0b6ce2bafff2db4ef76503a573</citedby><cites>FETCH-LOGICAL-c3939-94333e697f974aa07002a358cc7fb95e1a2961a0b6ce2bafff2db4ef76503a573</cites><orcidid>0000-0002-4154-6646 ; 0000-0003-4511-6579 ; 0000-0003-3882-9247 ; 0000-0003-4442-2216 ; 0000-0001-6884-8794 ; 0000-0001-8150-4902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.12669$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.12669$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37115040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Fengqiujie</creatorcontrib><creatorcontrib>Lian, Wentao</creatorcontrib><creatorcontrib>Gu, Xuelian</creatorcontrib><creatorcontrib>Zhang, Haojia</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Lü, Mingshou</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Huang, Yuyang</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Zhu, Xiuqing</creatorcontrib><title>Effect of polysaccharides on the rheological behaviour of soy–wheat protein aggregation and conformational changes during high‐moisture extrusion</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND Due to the extrusion black box effect, polysaccharides determine the formation of meat‐like fibrous structures by modulating the flow behaviour and structural changes of plant proteins under high‐moisture extrusion conditions. However, there is limited knowledge on the mechanism of resolution. This study simulated the rheological properties of soy protein–wheat protein under 57% moisture conditions with addition of 4% sodium alginate (SA), 2% xanthan gum (XG), and 2% maltodextrin (MD). The effect of these polysaccharides on the aggregation behaviour and conformation of raw protein during high‐moisture extrusion was investigated. RESULTS It was revealed that the three polysaccharides were effective in increasing the interaction between proteins and between proteins and water. Among them, 4% SA elicited a significantly stronger storage modulus (gelation behaviour) compared to the control. Analysis of different zones of extrudates by protein electrophoresis, particle size, and turbidity showed that SA‐4% was able to form more high molecular protein aggregates (&gt; 245 kDa) and promoted crosslinking of low molecular subunits (&lt; 48 kDa), resulting in moderately sized protein aggregated particles. Fluorescence and ultraviolet spectra showed the transformation of protein tertiary structures in different extrusion zones, confirming that the key extrusion zone for protein conformational transformation by polysaccharides is the die–cooling zone. Furthermore, stretching of polypeptide chains and accelerated protein rearrangement facilitated the formation of more fibrillar structures. CONCLUSION Theoretical support for polysaccharide modulation of plant protein quality in high moisture extruded products is provided by this study. © 2023 Society of Chemical Industry.</description><subject>Aggregation behavior</subject><subject>Alginic acid</subject><subject>conformational changes</subject><subject>Crosslinking</subject><subject>Electrophoresis</subject><subject>Extrusion dies</subject><subject>Extrusions</subject><subject>high‐moisture extrusion technology</subject><subject>Maltodextrin</subject><subject>Moisture effects</subject><subject>plant protein</subject><subject>Polypeptides</subject><subject>Polysaccharides</subject><subject>protein aggregation behaviour</subject><subject>Protein interaction</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Saccharides</subject><subject>Sodium alginate</subject><subject>Storage modulus</subject><subject>Turbidity</subject><subject>Ultraviolet spectra</subject><subject>Wheat</subject><subject>Xanthan</subject><subject>Xanthan gum</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQhy0EokvhwgMgS1wqpBT_SeL1saraUlSJA3COJs448SqJFzuh7K2PUKniBfskdbqFAwdOlsbffJqZHyFvOTvmjImPm2jhmIuy1M_IijOtMsY4e05W6VNkBc_FAXkV44YxpnVZviQHUnFesJytyO8za9FM1Fu69f0ugjEdBNdgpH6kU4c0dOh73zoDPa2xg5_Oz2Hho9_d39xddwgT3QY_oRsptG3AFiaXmmFsqPGj9WF4LKT-5B7bpG7m4MaWdq7t7m9uB-_iNAek-GsKc0zoa_LCQh_xzdN7SL6fn307_ZRdfbm4PD25yozUUmc6l1JiqZXVKgdgKi0Mslgbo2ytC-QgdMmB1aVBUYO1VjR1jlaVBZNQKHlIjvbeNP-PGeNUDS4a7HsY0c-xEmumtBBKLej7f9BNukNaaqHynDOR83WiPuwpE3yMAW21DW6AsKs4q5awqiWs6jGsBL97Us71gM1f9E86CeB74Nr1uPuPqvr89fxkL30AoY-kbg</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Wang, Fengqiujie</creator><creator>Lian, Wentao</creator><creator>Gu, Xuelian</creator><creator>Zhang, Haojia</creator><creator>Gao, Yang</creator><creator>Lü, Mingshou</creator><creator>Zhu, Ying</creator><creator>Huang, Yuyang</creator><creator>Sun, Ying</creator><creator>Zhu, Xiuqing</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4154-6646</orcidid><orcidid>https://orcid.org/0000-0003-4511-6579</orcidid><orcidid>https://orcid.org/0000-0003-3882-9247</orcidid><orcidid>https://orcid.org/0000-0003-4442-2216</orcidid><orcidid>https://orcid.org/0000-0001-6884-8794</orcidid><orcidid>https://orcid.org/0000-0001-8150-4902</orcidid></search><sort><creationdate>202309</creationdate><title>Effect of polysaccharides on the rheological behaviour of soy–wheat protein aggregation and conformational changes during high‐moisture extrusion</title><author>Wang, Fengqiujie ; Lian, Wentao ; Gu, Xuelian ; Zhang, Haojia ; Gao, Yang ; Lü, Mingshou ; Zhu, Ying ; Huang, Yuyang ; Sun, Ying ; Zhu, Xiuqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3939-94333e697f974aa07002a358cc7fb95e1a2961a0b6ce2bafff2db4ef76503a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aggregation behavior</topic><topic>Alginic acid</topic><topic>conformational changes</topic><topic>Crosslinking</topic><topic>Electrophoresis</topic><topic>Extrusion dies</topic><topic>Extrusions</topic><topic>high‐moisture extrusion technology</topic><topic>Maltodextrin</topic><topic>Moisture effects</topic><topic>plant protein</topic><topic>Polypeptides</topic><topic>Polysaccharides</topic><topic>protein aggregation behaviour</topic><topic>Protein interaction</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Saccharides</topic><topic>Sodium alginate</topic><topic>Storage modulus</topic><topic>Turbidity</topic><topic>Ultraviolet spectra</topic><topic>Wheat</topic><topic>Xanthan</topic><topic>Xanthan gum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fengqiujie</creatorcontrib><creatorcontrib>Lian, Wentao</creatorcontrib><creatorcontrib>Gu, Xuelian</creatorcontrib><creatorcontrib>Zhang, Haojia</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Lü, Mingshou</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Huang, Yuyang</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Zhu, Xiuqing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fengqiujie</au><au>Lian, Wentao</au><au>Gu, Xuelian</au><au>Zhang, Haojia</au><au>Gao, Yang</au><au>Lü, Mingshou</au><au>Zhu, Ying</au><au>Huang, Yuyang</au><au>Sun, Ying</au><au>Zhu, Xiuqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of polysaccharides on the rheological behaviour of soy–wheat protein aggregation and conformational changes during high‐moisture extrusion</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2023-09</date><risdate>2023</risdate><volume>103</volume><issue>12</issue><spage>5992</spage><epage>6004</epage><pages>5992-6004</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND Due to the extrusion black box effect, polysaccharides determine the formation of meat‐like fibrous structures by modulating the flow behaviour and structural changes of plant proteins under high‐moisture extrusion conditions. However, there is limited knowledge on the mechanism of resolution. This study simulated the rheological properties of soy protein–wheat protein under 57% moisture conditions with addition of 4% sodium alginate (SA), 2% xanthan gum (XG), and 2% maltodextrin (MD). The effect of these polysaccharides on the aggregation behaviour and conformation of raw protein during high‐moisture extrusion was investigated. RESULTS It was revealed that the three polysaccharides were effective in increasing the interaction between proteins and between proteins and water. Among them, 4% SA elicited a significantly stronger storage modulus (gelation behaviour) compared to the control. Analysis of different zones of extrudates by protein electrophoresis, particle size, and turbidity showed that SA‐4% was able to form more high molecular protein aggregates (&gt; 245 kDa) and promoted crosslinking of low molecular subunits (&lt; 48 kDa), resulting in moderately sized protein aggregated particles. Fluorescence and ultraviolet spectra showed the transformation of protein tertiary structures in different extrusion zones, confirming that the key extrusion zone for protein conformational transformation by polysaccharides is the die–cooling zone. Furthermore, stretching of polypeptide chains and accelerated protein rearrangement facilitated the formation of more fibrillar structures. CONCLUSION Theoretical support for polysaccharide modulation of plant protein quality in high moisture extruded products is provided by this study. © 2023 Society of Chemical Industry.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>37115040</pmid><doi>10.1002/jsfa.12669</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4154-6646</orcidid><orcidid>https://orcid.org/0000-0003-4511-6579</orcidid><orcidid>https://orcid.org/0000-0003-3882-9247</orcidid><orcidid>https://orcid.org/0000-0003-4442-2216</orcidid><orcidid>https://orcid.org/0000-0001-6884-8794</orcidid><orcidid>https://orcid.org/0000-0001-8150-4902</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2023-09, Vol.103 (12), p.5992-6004
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_2807922777
source Wiley Online Library Journals Frontfile Complete
subjects Aggregation behavior
Alginic acid
conformational changes
Crosslinking
Electrophoresis
Extrusion dies
Extrusions
high‐moisture extrusion technology
Maltodextrin
Moisture effects
plant protein
Polypeptides
Polysaccharides
protein aggregation behaviour
Protein interaction
Protein structure
Proteins
Rheological properties
Rheology
Saccharides
Sodium alginate
Storage modulus
Turbidity
Ultraviolet spectra
Wheat
Xanthan
Xanthan gum
title Effect of polysaccharides on the rheological behaviour of soy–wheat protein aggregation and conformational changes during high‐moisture extrusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20polysaccharides%20on%20the%20rheological%20behaviour%20of%20soy%E2%80%93wheat%20protein%20aggregation%20and%20conformational%20changes%20during%20high%E2%80%90moisture%20extrusion&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Wang,%20Fengqiujie&rft.date=2023-09&rft.volume=103&rft.issue=12&rft.spage=5992&rft.epage=6004&rft.pages=5992-6004&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.12669&rft_dat=%3Cproquest_cross%3E2807922777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844102418&rft_id=info:pmid/37115040&rfr_iscdi=true