Lipid class-dependent alterations of Caenorhabditis elegans under harmane exposure
Altered lipid patterns in Caenorhabditis elegans (C. elegans) resulting from exposure to harmane remain to be explored. In this study, untargeted lipidomics was carried out to elucidate the effects of acute exposure to harmane on the lipidome of C. elegans. Exposure to the compound was evaluated bas...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical and biomedical analysis 2023-07, Vol.231, p.115401-115401, Article 115401 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115401 |
---|---|
container_issue | |
container_start_page | 115401 |
container_title | Journal of pharmaceutical and biomedical analysis |
container_volume | 231 |
creator | Nguyen, Bao Tan Yen, Nguyen Thi Hai Tung, Ninh Khac Thanh Jeong, Gil-Saeng Kang, Jong Seong Long, Nguyen Phuoc Kim, Hyung Min |
description | Altered lipid patterns in Caenorhabditis elegans (C. elegans) resulting from exposure to harmane remain to be explored. In this study, untargeted lipidomics was carried out to elucidate the effects of acute exposure to harmane on the lipidome of C. elegans. Exposure to the compound was evaluated based on the reproduction ability of the worms at 0.1 and 1 μg/mL. No significant effects of harmane were observed at these concentrations. Furthermore, we found that the modulatory effects of harmane on the lipidome of C. elegans at 1 μg/mL were lipid class dependent. In particular, harmane-treated worms were enriched in triglycerides and fatty acids, regardless of the degree of saturation. Glycerophospholipids were generally down-regulated. Furthermore, functional analyses suggested that there was a reduction in lipid membrane bilayer-related terms, and in some related to the mitochondria, and endoplasmic reticulum of C. elegans when treated with harmane. Lipid droplets and storage appeared to be up-regulated. In conclusion, our findings suggest that harmane exposure affects the lipidome of C. elegans in a sophisticated manner. Further investigations are required to elucidate the molecular mechanisms underlying these lipid pattern changes.
•Lipidomics were applied to study toxic mechanisms of harmane on C. elegans.•Lethality and reproductive activity were evaluated upon exposure to harmane.•Modulatory effect of harmane on lipidome of C. elegans were class dependent.•Functional analyses suggested perturbation of key functions of lipids. |
doi_str_mv | 10.1016/j.jpba.2023.115401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2807920526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S073170852300170X</els_id><sourcerecordid>2807920526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8b6950ba62e8d7cb5396a302301b23c1bc93ade838730d2434b0ab38ff5405173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAfZo5etk2SzH-BFil9QEETBW8jHrE3Z7q7Jrui_N6XVo6c5zDMv8z6EnFOYU6D51Xq-7rWaM2B8TqnIgB6QKS0LnrI8ezskUyg4TQsoxYSchLAGAEGr7JhMeEFBQCam5HnpemcT06gQUos9thbbIVHNgF4NrmtD0tXJQmHb-ZXS1g0uJNjgu4qbMcI-WSm_US0m-NV3YfR4So5q1QQ8288Zeb27fVk8pMun-8fFzTI1XORDWuq8EqBVzrC0hdGCV7nisQtQzbih2lRcWSx5LASWZTzToDQv6zo2FbTgM3K5y-199zFiGOTGBYNNE5_pxiBZCUXFQLA8omyHGt-F4LGWvXcb5b8lBbl1Kddy61JuXcqdy3h0sc8f9Qbt38mvvAhc7wCMLT8dehmMw9agdR7NIG3n_sv_AQHBhPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807920526</pqid></control><display><type>article</type><title>Lipid class-dependent alterations of Caenorhabditis elegans under harmane exposure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nguyen, Bao Tan ; Yen, Nguyen Thi Hai ; Tung, Ninh Khac Thanh ; Jeong, Gil-Saeng ; Kang, Jong Seong ; Long, Nguyen Phuoc ; Kim, Hyung Min</creator><creatorcontrib>Nguyen, Bao Tan ; Yen, Nguyen Thi Hai ; Tung, Ninh Khac Thanh ; Jeong, Gil-Saeng ; Kang, Jong Seong ; Long, Nguyen Phuoc ; Kim, Hyung Min</creatorcontrib><description>Altered lipid patterns in Caenorhabditis elegans (C. elegans) resulting from exposure to harmane remain to be explored. In this study, untargeted lipidomics was carried out to elucidate the effects of acute exposure to harmane on the lipidome of C. elegans. Exposure to the compound was evaluated based on the reproduction ability of the worms at 0.1 and 1 μg/mL. No significant effects of harmane were observed at these concentrations. Furthermore, we found that the modulatory effects of harmane on the lipidome of C. elegans at 1 μg/mL were lipid class dependent. In particular, harmane-treated worms were enriched in triglycerides and fatty acids, regardless of the degree of saturation. Glycerophospholipids were generally down-regulated. Furthermore, functional analyses suggested that there was a reduction in lipid membrane bilayer-related terms, and in some related to the mitochondria, and endoplasmic reticulum of C. elegans when treated with harmane. Lipid droplets and storage appeared to be up-regulated. In conclusion, our findings suggest that harmane exposure affects the lipidome of C. elegans in a sophisticated manner. Further investigations are required to elucidate the molecular mechanisms underlying these lipid pattern changes.
•Lipidomics were applied to study toxic mechanisms of harmane on C. elegans.•Lethality and reproductive activity were evaluated upon exposure to harmane.•Modulatory effect of harmane on lipidome of C. elegans were class dependent.•Functional analyses suggested perturbation of key functions of lipids.</description><identifier>ISSN: 0731-7085</identifier><identifier>EISSN: 1873-264X</identifier><identifier>DOI: 10.1016/j.jpba.2023.115401</identifier><identifier>PMID: 37105045</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Animals ; Caenorhabditis elegans ; Fatty acid ; Fatty Acids ; Harmane ; Harmine - pharmacology ; Lipid-mediated signaling ; Lipidomics ; Toxicity ; Triglyceride ; Triglycerides</subject><ispartof>Journal of pharmaceutical and biomedical analysis, 2023-07, Vol.231, p.115401-115401, Article 115401</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8b6950ba62e8d7cb5396a302301b23c1bc93ade838730d2434b0ab38ff5405173</citedby><cites>FETCH-LOGICAL-c356t-8b6950ba62e8d7cb5396a302301b23c1bc93ade838730d2434b0ab38ff5405173</cites><orcidid>0000-0001-7488-0539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S073170852300170X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37105045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Bao Tan</creatorcontrib><creatorcontrib>Yen, Nguyen Thi Hai</creatorcontrib><creatorcontrib>Tung, Ninh Khac Thanh</creatorcontrib><creatorcontrib>Jeong, Gil-Saeng</creatorcontrib><creatorcontrib>Kang, Jong Seong</creatorcontrib><creatorcontrib>Long, Nguyen Phuoc</creatorcontrib><creatorcontrib>Kim, Hyung Min</creatorcontrib><title>Lipid class-dependent alterations of Caenorhabditis elegans under harmane exposure</title><title>Journal of pharmaceutical and biomedical analysis</title><addtitle>J Pharm Biomed Anal</addtitle><description>Altered lipid patterns in Caenorhabditis elegans (C. elegans) resulting from exposure to harmane remain to be explored. In this study, untargeted lipidomics was carried out to elucidate the effects of acute exposure to harmane on the lipidome of C. elegans. Exposure to the compound was evaluated based on the reproduction ability of the worms at 0.1 and 1 μg/mL. No significant effects of harmane were observed at these concentrations. Furthermore, we found that the modulatory effects of harmane on the lipidome of C. elegans at 1 μg/mL were lipid class dependent. In particular, harmane-treated worms were enriched in triglycerides and fatty acids, regardless of the degree of saturation. Glycerophospholipids were generally down-regulated. Furthermore, functional analyses suggested that there was a reduction in lipid membrane bilayer-related terms, and in some related to the mitochondria, and endoplasmic reticulum of C. elegans when treated with harmane. Lipid droplets and storage appeared to be up-regulated. In conclusion, our findings suggest that harmane exposure affects the lipidome of C. elegans in a sophisticated manner. Further investigations are required to elucidate the molecular mechanisms underlying these lipid pattern changes.
•Lipidomics were applied to study toxic mechanisms of harmane on C. elegans.•Lethality and reproductive activity were evaluated upon exposure to harmane.•Modulatory effect of harmane on lipidome of C. elegans were class dependent.•Functional analyses suggested perturbation of key functions of lipids.</description><subject>Animals</subject><subject>Caenorhabditis elegans</subject><subject>Fatty acid</subject><subject>Fatty Acids</subject><subject>Harmane</subject><subject>Harmine - pharmacology</subject><subject>Lipid-mediated signaling</subject><subject>Lipidomics</subject><subject>Toxicity</subject><subject>Triglyceride</subject><subject>Triglycerides</subject><issn>0731-7085</issn><issn>1873-264X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAfZo5etk2SzH-BFil9QEETBW8jHrE3Z7q7Jrui_N6XVo6c5zDMv8z6EnFOYU6D51Xq-7rWaM2B8TqnIgB6QKS0LnrI8ezskUyg4TQsoxYSchLAGAEGr7JhMeEFBQCam5HnpemcT06gQUos9thbbIVHNgF4NrmtD0tXJQmHb-ZXS1g0uJNjgu4qbMcI-WSm_US0m-NV3YfR4So5q1QQ8288Zeb27fVk8pMun-8fFzTI1XORDWuq8EqBVzrC0hdGCV7nisQtQzbih2lRcWSx5LASWZTzToDQv6zo2FbTgM3K5y-199zFiGOTGBYNNE5_pxiBZCUXFQLA8omyHGt-F4LGWvXcb5b8lBbl1Kddy61JuXcqdy3h0sc8f9Qbt38mvvAhc7wCMLT8dehmMw9agdR7NIG3n_sv_AQHBhPo</recordid><startdate>20230705</startdate><enddate>20230705</enddate><creator>Nguyen, Bao Tan</creator><creator>Yen, Nguyen Thi Hai</creator><creator>Tung, Ninh Khac Thanh</creator><creator>Jeong, Gil-Saeng</creator><creator>Kang, Jong Seong</creator><creator>Long, Nguyen Phuoc</creator><creator>Kim, Hyung Min</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7488-0539</orcidid></search><sort><creationdate>20230705</creationdate><title>Lipid class-dependent alterations of Caenorhabditis elegans under harmane exposure</title><author>Nguyen, Bao Tan ; Yen, Nguyen Thi Hai ; Tung, Ninh Khac Thanh ; Jeong, Gil-Saeng ; Kang, Jong Seong ; Long, Nguyen Phuoc ; Kim, Hyung Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8b6950ba62e8d7cb5396a302301b23c1bc93ade838730d2434b0ab38ff5405173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans</topic><topic>Fatty acid</topic><topic>Fatty Acids</topic><topic>Harmane</topic><topic>Harmine - pharmacology</topic><topic>Lipid-mediated signaling</topic><topic>Lipidomics</topic><topic>Toxicity</topic><topic>Triglyceride</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Bao Tan</creatorcontrib><creatorcontrib>Yen, Nguyen Thi Hai</creatorcontrib><creatorcontrib>Tung, Ninh Khac Thanh</creatorcontrib><creatorcontrib>Jeong, Gil-Saeng</creatorcontrib><creatorcontrib>Kang, Jong Seong</creatorcontrib><creatorcontrib>Long, Nguyen Phuoc</creatorcontrib><creatorcontrib>Kim, Hyung Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical and biomedical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Bao Tan</au><au>Yen, Nguyen Thi Hai</au><au>Tung, Ninh Khac Thanh</au><au>Jeong, Gil-Saeng</au><au>Kang, Jong Seong</au><au>Long, Nguyen Phuoc</au><au>Kim, Hyung Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipid class-dependent alterations of Caenorhabditis elegans under harmane exposure</atitle><jtitle>Journal of pharmaceutical and biomedical analysis</jtitle><addtitle>J Pharm Biomed Anal</addtitle><date>2023-07-05</date><risdate>2023</risdate><volume>231</volume><spage>115401</spage><epage>115401</epage><pages>115401-115401</pages><artnum>115401</artnum><issn>0731-7085</issn><eissn>1873-264X</eissn><abstract>Altered lipid patterns in Caenorhabditis elegans (C. elegans) resulting from exposure to harmane remain to be explored. In this study, untargeted lipidomics was carried out to elucidate the effects of acute exposure to harmane on the lipidome of C. elegans. Exposure to the compound was evaluated based on the reproduction ability of the worms at 0.1 and 1 μg/mL. No significant effects of harmane were observed at these concentrations. Furthermore, we found that the modulatory effects of harmane on the lipidome of C. elegans at 1 μg/mL were lipid class dependent. In particular, harmane-treated worms were enriched in triglycerides and fatty acids, regardless of the degree of saturation. Glycerophospholipids were generally down-regulated. Furthermore, functional analyses suggested that there was a reduction in lipid membrane bilayer-related terms, and in some related to the mitochondria, and endoplasmic reticulum of C. elegans when treated with harmane. Lipid droplets and storage appeared to be up-regulated. In conclusion, our findings suggest that harmane exposure affects the lipidome of C. elegans in a sophisticated manner. Further investigations are required to elucidate the molecular mechanisms underlying these lipid pattern changes.
•Lipidomics were applied to study toxic mechanisms of harmane on C. elegans.•Lethality and reproductive activity were evaluated upon exposure to harmane.•Modulatory effect of harmane on lipidome of C. elegans were class dependent.•Functional analyses suggested perturbation of key functions of lipids.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>37105045</pmid><doi>10.1016/j.jpba.2023.115401</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7488-0539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-7085 |
ispartof | Journal of pharmaceutical and biomedical analysis, 2023-07, Vol.231, p.115401-115401, Article 115401 |
issn | 0731-7085 1873-264X |
language | eng |
recordid | cdi_proquest_miscellaneous_2807920526 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Caenorhabditis elegans Fatty acid Fatty Acids Harmane Harmine - pharmacology Lipid-mediated signaling Lipidomics Toxicity Triglyceride Triglycerides |
title | Lipid class-dependent alterations of Caenorhabditis elegans under harmane exposure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipid%20class-dependent%20alterations%20of%20Caenorhabditis%20elegans%20under%20harmane%20exposure&rft.jtitle=Journal%20of%20pharmaceutical%20and%20biomedical%20analysis&rft.au=Nguyen,%20Bao%20Tan&rft.date=2023-07-05&rft.volume=231&rft.spage=115401&rft.epage=115401&rft.pages=115401-115401&rft.artnum=115401&rft.issn=0731-7085&rft.eissn=1873-264X&rft_id=info:doi/10.1016/j.jpba.2023.115401&rft_dat=%3Cproquest_cross%3E2807920526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807920526&rft_id=info:pmid/37105045&rft_els_id=S073170852300170X&rfr_iscdi=true |