Passive heat stress induces mitochondrial adaptations in skeletal muscle

The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hyperthermia 2023-12, Vol.40 (1), p.2205066-2205066
Hauptverfasser: Marchant, Erik D., Nelson, W. Bradley, Hyldahl, Robert D., Gifford, Jayson R., Hancock, Chad R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2205066
container_issue 1
container_start_page 2205066
container_title International journal of hyperthermia
container_volume 40
creator Marchant, Erik D.
Nelson, W. Bradley
Hyldahl, Robert D.
Gifford, Jayson R.
Hancock, Chad R.
description The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of disuse and disease. While exercise is known to cause robust improvements in mitochondrial health, not all individuals are able to exercise. This creates a need for alternate interventions which elicit some of the same benefits as exercise. Passive heating (i.e., application of heat in the absence of muscle contractions) is one potential intervention which has been shown to increase mitochondrial enzyme content and activity, and to improve mitochondrial respiration. Associated with increases in mitochondrial content and/or function, passive heating can also improve insulin sensitivity in the context of type II diabetes and preserve muscle mass in the face of limb disuse. This area of research remains in its infancy, with many questions yet to be answered about how to maximize the benefits of passive heating and elucidate the mechanisms by which heat stress affects muscle mitochondria.
doi_str_mv 10.1080/02656736.2023.2205066
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2807920112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_37a98e14447c482bacba190f9eae0057</doaj_id><sourcerecordid>2807920112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-89d4b497cefa1735f3e053d083170d8ddae8023c0bfb8f1568a4058b346525033</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCTwDlyCXL-Ct2bqAKaKVKcICzNfEHdUnixXao-u9J2G2PnCyNnnlfjx5C3lDYU9DwHlgnO8W7PQPG94yBhK57RnZUdKKVVKrnZLcx7QadkfNS7gBASKZekjOuKHRCiR25-oalxD--ufVYm1KzL6WJs1usL80Ua7K3aXY54tigw0PFGtO8EU355Udf1_m0FDv6V-RFwLH416f3gvz4_On75VV78_XL9eXHm9YK1ddW904MolfWB6SKy8A9SO5Ac6rAaefQ6_UgC0MYdKCy0yhA6oGLTjIJnF-Q62OuS3hnDjlOmB9Mwmj-DVL-aTDXuP7IcIW99lQIoazQbEA7IO0h9B49gFRr1rtj1iGn34sv1UyxWD-OOPu0FMM0qJ4BpWxF5RG1OZWSfXiqpmA2IeZRiNmEmJOQde_tqWIZJu-eth4NrMCHIxDnkPKE9ymPzlR8GFMOGWcbi-H_7_gLDGuZLA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807920112</pqid></control><display><type>article</type><title>Passive heat stress induces mitochondrial adaptations in skeletal muscle</title><source>Taylor &amp; Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><creator>Marchant, Erik D. ; Nelson, W. Bradley ; Hyldahl, Robert D. ; Gifford, Jayson R. ; Hancock, Chad R.</creator><creatorcontrib>Marchant, Erik D. ; Nelson, W. Bradley ; Hyldahl, Robert D. ; Gifford, Jayson R. ; Hancock, Chad R.</creatorcontrib><description>The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of disuse and disease. While exercise is known to cause robust improvements in mitochondrial health, not all individuals are able to exercise. This creates a need for alternate interventions which elicit some of the same benefits as exercise. Passive heating (i.e., application of heat in the absence of muscle contractions) is one potential intervention which has been shown to increase mitochondrial enzyme content and activity, and to improve mitochondrial respiration. Associated with increases in mitochondrial content and/or function, passive heating can also improve insulin sensitivity in the context of type II diabetes and preserve muscle mass in the face of limb disuse. This area of research remains in its infancy, with many questions yet to be answered about how to maximize the benefits of passive heating and elucidate the mechanisms by which heat stress affects muscle mitochondria.</description><identifier>ISSN: 0265-6736</identifier><identifier>EISSN: 1464-5157</identifier><identifier>DOI: 10.1080/02656736.2023.2205066</identifier><identifier>PMID: 37106474</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>atrophy ; chaperones ; Diabetes Mellitus, Type 2 ; Heat ; heat shock response (i.e ; Heat-Shock Response ; HSP ; Humans ; hypoxia ; metabolism ; microenvironment ; mitochondria ; Mitochondria - metabolism ; Mitochondria, Muscle - metabolism ; Muscle, Skeletal - physiology ; perfusion effects ; physiological effects of hyperthermia (i.e ; redox ; skeletal muscle ; thermal ; thermotolerance</subject><ispartof>International journal of hyperthermia, 2023-12, Vol.40 (1), p.2205066-2205066</ispartof><rights>2023 The Author(s). Published with license by Taylor &amp; Francis Group, LLC 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-89d4b497cefa1735f3e053d083170d8ddae8023c0bfb8f1568a4058b346525033</citedby><cites>FETCH-LOGICAL-c479t-89d4b497cefa1735f3e053d083170d8ddae8023c0bfb8f1568a4058b346525033</cites><orcidid>0000-0003-4961-1868 ; 0000-0002-2222-7594 ; 0000-0002-1578-5301 ; 0000-0003-0793-2006 ; 0000-0002-6034-306X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02656736.2023.2205066$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02656736.2023.2205066$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27502,27924,27925,59143,59144</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37106474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marchant, Erik D.</creatorcontrib><creatorcontrib>Nelson, W. Bradley</creatorcontrib><creatorcontrib>Hyldahl, Robert D.</creatorcontrib><creatorcontrib>Gifford, Jayson R.</creatorcontrib><creatorcontrib>Hancock, Chad R.</creatorcontrib><title>Passive heat stress induces mitochondrial adaptations in skeletal muscle</title><title>International journal of hyperthermia</title><addtitle>Int J Hyperthermia</addtitle><description>The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of disuse and disease. While exercise is known to cause robust improvements in mitochondrial health, not all individuals are able to exercise. This creates a need for alternate interventions which elicit some of the same benefits as exercise. Passive heating (i.e., application of heat in the absence of muscle contractions) is one potential intervention which has been shown to increase mitochondrial enzyme content and activity, and to improve mitochondrial respiration. Associated with increases in mitochondrial content and/or function, passive heating can also improve insulin sensitivity in the context of type II diabetes and preserve muscle mass in the face of limb disuse. This area of research remains in its infancy, with many questions yet to be answered about how to maximize the benefits of passive heating and elucidate the mechanisms by which heat stress affects muscle mitochondria.</description><subject>atrophy</subject><subject>chaperones</subject><subject>Diabetes Mellitus, Type 2</subject><subject>Heat</subject><subject>heat shock response (i.e</subject><subject>Heat-Shock Response</subject><subject>HSP</subject><subject>Humans</subject><subject>hypoxia</subject><subject>metabolism</subject><subject>microenvironment</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>perfusion effects</subject><subject>physiological effects of hyperthermia (i.e</subject><subject>redox</subject><subject>skeletal muscle</subject><subject>thermal</subject><subject>thermotolerance</subject><issn>0265-6736</issn><issn>1464-5157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EotvCTwDlyCXL-Ct2bqAKaKVKcICzNfEHdUnixXao-u9J2G2PnCyNnnlfjx5C3lDYU9DwHlgnO8W7PQPG94yBhK57RnZUdKKVVKrnZLcx7QadkfNS7gBASKZekjOuKHRCiR25-oalxD--ufVYm1KzL6WJs1usL80Ua7K3aXY54tigw0PFGtO8EU355Udf1_m0FDv6V-RFwLH416f3gvz4_On75VV78_XL9eXHm9YK1ddW904MolfWB6SKy8A9SO5Ac6rAaefQ6_UgC0MYdKCy0yhA6oGLTjIJnF-Q62OuS3hnDjlOmB9Mwmj-DVL-aTDXuP7IcIW99lQIoazQbEA7IO0h9B49gFRr1rtj1iGn34sv1UyxWD-OOPu0FMM0qJ4BpWxF5RG1OZWSfXiqpmA2IeZRiNmEmJOQde_tqWIZJu-eth4NrMCHIxDnkPKE9ymPzlR8GFMOGWcbi-H_7_gLDGuZLA</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Marchant, Erik D.</creator><creator>Nelson, W. Bradley</creator><creator>Hyldahl, Robert D.</creator><creator>Gifford, Jayson R.</creator><creator>Hancock, Chad R.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4961-1868</orcidid><orcidid>https://orcid.org/0000-0002-2222-7594</orcidid><orcidid>https://orcid.org/0000-0002-1578-5301</orcidid><orcidid>https://orcid.org/0000-0003-0793-2006</orcidid><orcidid>https://orcid.org/0000-0002-6034-306X</orcidid></search><sort><creationdate>20231231</creationdate><title>Passive heat stress induces mitochondrial adaptations in skeletal muscle</title><author>Marchant, Erik D. ; Nelson, W. Bradley ; Hyldahl, Robert D. ; Gifford, Jayson R. ; Hancock, Chad R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-89d4b497cefa1735f3e053d083170d8ddae8023c0bfb8f1568a4058b346525033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>atrophy</topic><topic>chaperones</topic><topic>Diabetes Mellitus, Type 2</topic><topic>Heat</topic><topic>heat shock response (i.e</topic><topic>Heat-Shock Response</topic><topic>HSP</topic><topic>Humans</topic><topic>hypoxia</topic><topic>metabolism</topic><topic>microenvironment</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>perfusion effects</topic><topic>physiological effects of hyperthermia (i.e</topic><topic>redox</topic><topic>skeletal muscle</topic><topic>thermal</topic><topic>thermotolerance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchant, Erik D.</creatorcontrib><creatorcontrib>Nelson, W. Bradley</creatorcontrib><creatorcontrib>Hyldahl, Robert D.</creatorcontrib><creatorcontrib>Gifford, Jayson R.</creatorcontrib><creatorcontrib>Hancock, Chad R.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of hyperthermia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchant, Erik D.</au><au>Nelson, W. Bradley</au><au>Hyldahl, Robert D.</au><au>Gifford, Jayson R.</au><au>Hancock, Chad R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive heat stress induces mitochondrial adaptations in skeletal muscle</atitle><jtitle>International journal of hyperthermia</jtitle><addtitle>Int J Hyperthermia</addtitle><date>2023-12-31</date><risdate>2023</risdate><volume>40</volume><issue>1</issue><spage>2205066</spage><epage>2205066</epage><pages>2205066-2205066</pages><issn>0265-6736</issn><eissn>1464-5157</eissn><abstract>The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of disuse and disease. While exercise is known to cause robust improvements in mitochondrial health, not all individuals are able to exercise. This creates a need for alternate interventions which elicit some of the same benefits as exercise. Passive heating (i.e., application of heat in the absence of muscle contractions) is one potential intervention which has been shown to increase mitochondrial enzyme content and activity, and to improve mitochondrial respiration. Associated with increases in mitochondrial content and/or function, passive heating can also improve insulin sensitivity in the context of type II diabetes and preserve muscle mass in the face of limb disuse. This area of research remains in its infancy, with many questions yet to be answered about how to maximize the benefits of passive heating and elucidate the mechanisms by which heat stress affects muscle mitochondria.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>37106474</pmid><doi>10.1080/02656736.2023.2205066</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4961-1868</orcidid><orcidid>https://orcid.org/0000-0002-2222-7594</orcidid><orcidid>https://orcid.org/0000-0002-1578-5301</orcidid><orcidid>https://orcid.org/0000-0003-0793-2006</orcidid><orcidid>https://orcid.org/0000-0002-6034-306X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0265-6736
ispartof International journal of hyperthermia, 2023-12, Vol.40 (1), p.2205066-2205066
issn 0265-6736
1464-5157
language eng
recordid cdi_proquest_miscellaneous_2807920112
source Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals
subjects atrophy
chaperones
Diabetes Mellitus, Type 2
Heat
heat shock response (i.e
Heat-Shock Response
HSP
Humans
hypoxia
metabolism
microenvironment
mitochondria
Mitochondria - metabolism
Mitochondria, Muscle - metabolism
Muscle, Skeletal - physiology
perfusion effects
physiological effects of hyperthermia (i.e
redox
skeletal muscle
thermal
thermotolerance
title Passive heat stress induces mitochondrial adaptations in skeletal muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20heat%20stress%20induces%20mitochondrial%20adaptations%20in%20skeletal%20muscle&rft.jtitle=International%20journal%20of%20hyperthermia&rft.au=Marchant,%20Erik%20D.&rft.date=2023-12-31&rft.volume=40&rft.issue=1&rft.spage=2205066&rft.epage=2205066&rft.pages=2205066-2205066&rft.issn=0265-6736&rft.eissn=1464-5157&rft_id=info:doi/10.1080/02656736.2023.2205066&rft_dat=%3Cproquest_doaj_%3E2807920112%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807920112&rft_id=info:pmid/37106474&rft_doaj_id=oai_doaj_org_article_37a98e14447c482bacba190f9eae0057&rfr_iscdi=true