Passive heat stress induces mitochondrial adaptations in skeletal muscle
The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of di...
Gespeichert in:
Veröffentlicht in: | International journal of hyperthermia 2023-12, Vol.40 (1), p.2205066-2205066 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2205066 |
---|---|
container_issue | 1 |
container_start_page | 2205066 |
container_title | International journal of hyperthermia |
container_volume | 40 |
creator | Marchant, Erik D. Nelson, W. Bradley Hyldahl, Robert D. Gifford, Jayson R. Hancock, Chad R. |
description | The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of disuse and disease. While exercise is known to cause robust improvements in mitochondrial health, not all individuals are able to exercise. This creates a need for alternate interventions which elicit some of the same benefits as exercise. Passive heating (i.e., application of heat in the absence of muscle contractions) is one potential intervention which has been shown to increase mitochondrial enzyme content and activity, and to improve mitochondrial respiration. Associated with increases in mitochondrial content and/or function, passive heating can also improve insulin sensitivity in the context of type II diabetes and preserve muscle mass in the face of limb disuse. This area of research remains in its infancy, with many questions yet to be answered about how to maximize the benefits of passive heating and elucidate the mechanisms by which heat stress affects muscle mitochondria. |
doi_str_mv | 10.1080/02656736.2023.2205066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2807920112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_37a98e14447c482bacba190f9eae0057</doaj_id><sourcerecordid>2807920112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-89d4b497cefa1735f3e053d083170d8ddae8023c0bfb8f1568a4058b346525033</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCTwDlyCXL-Ct2bqAKaKVKcICzNfEHdUnixXao-u9J2G2PnCyNnnlfjx5C3lDYU9DwHlgnO8W7PQPG94yBhK57RnZUdKKVVKrnZLcx7QadkfNS7gBASKZekjOuKHRCiR25-oalxD--ufVYm1KzL6WJs1usL80Ua7K3aXY54tigw0PFGtO8EU355Udf1_m0FDv6V-RFwLH416f3gvz4_On75VV78_XL9eXHm9YK1ddW904MolfWB6SKy8A9SO5Ac6rAaefQ6_UgC0MYdKCy0yhA6oGLTjIJnF-Q62OuS3hnDjlOmB9Mwmj-DVL-aTDXuP7IcIW99lQIoazQbEA7IO0h9B49gFRr1rtj1iGn34sv1UyxWD-OOPu0FMM0qJ4BpWxF5RG1OZWSfXiqpmA2IeZRiNmEmJOQde_tqWIZJu-eth4NrMCHIxDnkPKE9ymPzlR8GFMOGWcbi-H_7_gLDGuZLA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807920112</pqid></control><display><type>article</type><title>Passive heat stress induces mitochondrial adaptations in skeletal muscle</title><source>Taylor & Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><creator>Marchant, Erik D. ; Nelson, W. Bradley ; Hyldahl, Robert D. ; Gifford, Jayson R. ; Hancock, Chad R.</creator><creatorcontrib>Marchant, Erik D. ; Nelson, W. Bradley ; Hyldahl, Robert D. ; Gifford, Jayson R. ; Hancock, Chad R.</creatorcontrib><description>The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of disuse and disease. While exercise is known to cause robust improvements in mitochondrial health, not all individuals are able to exercise. This creates a need for alternate interventions which elicit some of the same benefits as exercise. Passive heating (i.e., application of heat in the absence of muscle contractions) is one potential intervention which has been shown to increase mitochondrial enzyme content and activity, and to improve mitochondrial respiration. Associated with increases in mitochondrial content and/or function, passive heating can also improve insulin sensitivity in the context of type II diabetes and preserve muscle mass in the face of limb disuse. This area of research remains in its infancy, with many questions yet to be answered about how to maximize the benefits of passive heating and elucidate the mechanisms by which heat stress affects muscle mitochondria.</description><identifier>ISSN: 0265-6736</identifier><identifier>EISSN: 1464-5157</identifier><identifier>DOI: 10.1080/02656736.2023.2205066</identifier><identifier>PMID: 37106474</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>atrophy ; chaperones ; Diabetes Mellitus, Type 2 ; Heat ; heat shock response (i.e ; Heat-Shock Response ; HSP ; Humans ; hypoxia ; metabolism ; microenvironment ; mitochondria ; Mitochondria - metabolism ; Mitochondria, Muscle - metabolism ; Muscle, Skeletal - physiology ; perfusion effects ; physiological effects of hyperthermia (i.e ; redox ; skeletal muscle ; thermal ; thermotolerance</subject><ispartof>International journal of hyperthermia, 2023-12, Vol.40 (1), p.2205066-2205066</ispartof><rights>2023 The Author(s). Published with license by Taylor & Francis Group, LLC 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-89d4b497cefa1735f3e053d083170d8ddae8023c0bfb8f1568a4058b346525033</citedby><cites>FETCH-LOGICAL-c479t-89d4b497cefa1735f3e053d083170d8ddae8023c0bfb8f1568a4058b346525033</cites><orcidid>0000-0003-4961-1868 ; 0000-0002-2222-7594 ; 0000-0002-1578-5301 ; 0000-0003-0793-2006 ; 0000-0002-6034-306X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02656736.2023.2205066$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02656736.2023.2205066$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27502,27924,27925,59143,59144</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37106474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marchant, Erik D.</creatorcontrib><creatorcontrib>Nelson, W. Bradley</creatorcontrib><creatorcontrib>Hyldahl, Robert D.</creatorcontrib><creatorcontrib>Gifford, Jayson R.</creatorcontrib><creatorcontrib>Hancock, Chad R.</creatorcontrib><title>Passive heat stress induces mitochondrial adaptations in skeletal muscle</title><title>International journal of hyperthermia</title><addtitle>Int J Hyperthermia</addtitle><description>The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of disuse and disease. While exercise is known to cause robust improvements in mitochondrial health, not all individuals are able to exercise. This creates a need for alternate interventions which elicit some of the same benefits as exercise. Passive heating (i.e., application of heat in the absence of muscle contractions) is one potential intervention which has been shown to increase mitochondrial enzyme content and activity, and to improve mitochondrial respiration. Associated with increases in mitochondrial content and/or function, passive heating can also improve insulin sensitivity in the context of type II diabetes and preserve muscle mass in the face of limb disuse. This area of research remains in its infancy, with many questions yet to be answered about how to maximize the benefits of passive heating and elucidate the mechanisms by which heat stress affects muscle mitochondria.</description><subject>atrophy</subject><subject>chaperones</subject><subject>Diabetes Mellitus, Type 2</subject><subject>Heat</subject><subject>heat shock response (i.e</subject><subject>Heat-Shock Response</subject><subject>HSP</subject><subject>Humans</subject><subject>hypoxia</subject><subject>metabolism</subject><subject>microenvironment</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>perfusion effects</subject><subject>physiological effects of hyperthermia (i.e</subject><subject>redox</subject><subject>skeletal muscle</subject><subject>thermal</subject><subject>thermotolerance</subject><issn>0265-6736</issn><issn>1464-5157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EotvCTwDlyCXL-Ct2bqAKaKVKcICzNfEHdUnixXao-u9J2G2PnCyNnnlfjx5C3lDYU9DwHlgnO8W7PQPG94yBhK57RnZUdKKVVKrnZLcx7QadkfNS7gBASKZekjOuKHRCiR25-oalxD--ufVYm1KzL6WJs1usL80Ua7K3aXY54tigw0PFGtO8EU355Udf1_m0FDv6V-RFwLH416f3gvz4_On75VV78_XL9eXHm9YK1ddW904MolfWB6SKy8A9SO5Ac6rAaefQ6_UgC0MYdKCy0yhA6oGLTjIJnF-Q62OuS3hnDjlOmB9Mwmj-DVL-aTDXuP7IcIW99lQIoazQbEA7IO0h9B49gFRr1rtj1iGn34sv1UyxWD-OOPu0FMM0qJ4BpWxF5RG1OZWSfXiqpmA2IeZRiNmEmJOQde_tqWIZJu-eth4NrMCHIxDnkPKE9ymPzlR8GFMOGWcbi-H_7_gLDGuZLA</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Marchant, Erik D.</creator><creator>Nelson, W. Bradley</creator><creator>Hyldahl, Robert D.</creator><creator>Gifford, Jayson R.</creator><creator>Hancock, Chad R.</creator><general>Taylor & Francis</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4961-1868</orcidid><orcidid>https://orcid.org/0000-0002-2222-7594</orcidid><orcidid>https://orcid.org/0000-0002-1578-5301</orcidid><orcidid>https://orcid.org/0000-0003-0793-2006</orcidid><orcidid>https://orcid.org/0000-0002-6034-306X</orcidid></search><sort><creationdate>20231231</creationdate><title>Passive heat stress induces mitochondrial adaptations in skeletal muscle</title><author>Marchant, Erik D. ; Nelson, W. Bradley ; Hyldahl, Robert D. ; Gifford, Jayson R. ; Hancock, Chad R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-89d4b497cefa1735f3e053d083170d8ddae8023c0bfb8f1568a4058b346525033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>atrophy</topic><topic>chaperones</topic><topic>Diabetes Mellitus, Type 2</topic><topic>Heat</topic><topic>heat shock response (i.e</topic><topic>Heat-Shock Response</topic><topic>HSP</topic><topic>Humans</topic><topic>hypoxia</topic><topic>metabolism</topic><topic>microenvironment</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>perfusion effects</topic><topic>physiological effects of hyperthermia (i.e</topic><topic>redox</topic><topic>skeletal muscle</topic><topic>thermal</topic><topic>thermotolerance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchant, Erik D.</creatorcontrib><creatorcontrib>Nelson, W. Bradley</creatorcontrib><creatorcontrib>Hyldahl, Robert D.</creatorcontrib><creatorcontrib>Gifford, Jayson R.</creatorcontrib><creatorcontrib>Hancock, Chad R.</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of hyperthermia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchant, Erik D.</au><au>Nelson, W. Bradley</au><au>Hyldahl, Robert D.</au><au>Gifford, Jayson R.</au><au>Hancock, Chad R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive heat stress induces mitochondrial adaptations in skeletal muscle</atitle><jtitle>International journal of hyperthermia</jtitle><addtitle>Int J Hyperthermia</addtitle><date>2023-12-31</date><risdate>2023</risdate><volume>40</volume><issue>1</issue><spage>2205066</spage><epage>2205066</epage><pages>2205066-2205066</pages><issn>0265-6736</issn><eissn>1464-5157</eissn><abstract>The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of disuse and disease. While exercise is known to cause robust improvements in mitochondrial health, not all individuals are able to exercise. This creates a need for alternate interventions which elicit some of the same benefits as exercise. Passive heating (i.e., application of heat in the absence of muscle contractions) is one potential intervention which has been shown to increase mitochondrial enzyme content and activity, and to improve mitochondrial respiration. Associated with increases in mitochondrial content and/or function, passive heating can also improve insulin sensitivity in the context of type II diabetes and preserve muscle mass in the face of limb disuse. This area of research remains in its infancy, with many questions yet to be answered about how to maximize the benefits of passive heating and elucidate the mechanisms by which heat stress affects muscle mitochondria.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>37106474</pmid><doi>10.1080/02656736.2023.2205066</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4961-1868</orcidid><orcidid>https://orcid.org/0000-0002-2222-7594</orcidid><orcidid>https://orcid.org/0000-0002-1578-5301</orcidid><orcidid>https://orcid.org/0000-0003-0793-2006</orcidid><orcidid>https://orcid.org/0000-0002-6034-306X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-6736 |
ispartof | International journal of hyperthermia, 2023-12, Vol.40 (1), p.2205066-2205066 |
issn | 0265-6736 1464-5157 |
language | eng |
recordid | cdi_proquest_miscellaneous_2807920112 |
source | Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals |
subjects | atrophy chaperones Diabetes Mellitus, Type 2 Heat heat shock response (i.e Heat-Shock Response HSP Humans hypoxia metabolism microenvironment mitochondria Mitochondria - metabolism Mitochondria, Muscle - metabolism Muscle, Skeletal - physiology perfusion effects physiological effects of hyperthermia (i.e redox skeletal muscle thermal thermotolerance |
title | Passive heat stress induces mitochondrial adaptations in skeletal muscle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20heat%20stress%20induces%20mitochondrial%20adaptations%20in%20skeletal%20muscle&rft.jtitle=International%20journal%20of%20hyperthermia&rft.au=Marchant,%20Erik%20D.&rft.date=2023-12-31&rft.volume=40&rft.issue=1&rft.spage=2205066&rft.epage=2205066&rft.pages=2205066-2205066&rft.issn=0265-6736&rft.eissn=1464-5157&rft_id=info:doi/10.1080/02656736.2023.2205066&rft_dat=%3Cproquest_doaj_%3E2807920112%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807920112&rft_id=info:pmid/37106474&rft_doaj_id=oai_doaj_org_article_37a98e14447c482bacba190f9eae0057&rfr_iscdi=true |