An Artificial Olfactory System Based on a Chemi‐Memristive Device
Technologies based on the fusion of gas sensors and neuromorphic computing to mimic the olfactory system have immense potential. However, the implementation of neuromorphic olfactory systems remains in a state of infancy because conventional gas sensors lack the necessary functions. Therefore, this...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-09, Vol.35 (35), p.e2302219-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 35 |
container_start_page | e2302219 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Chun, Suk Yeop Song, Young Geun Kim, Ji Eun Kwon, Jae Uk Soh, Keunho Kwon, Ju Young Kang, Chong‐Yun Yoon, Jung Ho |
description | Technologies based on the fusion of gas sensors and neuromorphic computing to mimic the olfactory system have immense potential. However, the implementation of neuromorphic olfactory systems remains in a state of infancy because conventional gas sensors lack the necessary functions. Therefore, this study proposes a hysteretic “chemi‐memristive gas sensor” based on oxygen vacancy chemi‐memristive dynamics that differ from that of conventional gas sensors. After the memristive switching operation, the redox reaction with the external gas molecules is enhanced, resulting in the generation and elimination of oxygen vacancies that induce rapid current changes. In addition, the pre‐generated oxygen vacancies enhance the post‐sensing properties. Therefore, fast responses, short recovery times, and hysteretic gas response are achieved by the proposed sensor at room temperature. Based on the advantageous functionality of the sensor, device‐level olfactory systems that can monitor the history of input gas stimuli are experimentally demonstrated as a potential application. Moreover, analog conductance modulation induced by oxidizing and reducing gases enables the conversion of external gas stimuli into synaptic weights and hence the realization of typical synaptic functionalities without an additional device or circuit. The proposed chemi‐memristive device represents an advance in the bioinspired technology adopted in creating artificial intelligence systems.
A hysteretic chemi‐memristive gas sensor containing TiO2‐nanorod memristors based on oxygen vacancy dynamics different from that of conventional sensors is developed. Analog conductance modulation based on the redox reaction with external gas molecules in a ruptured filament area after memristive switching converts external gas stimuli into synaptic weights to realize an artificial olfactory system. |
doi_str_mv | 10.1002/adma.202302219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2807916854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807916854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-746265e7fcab41af9f4532c9fa3dd55bb3f1a8da92204a87404cf2708bd8d3ce3</originalsourceid><addsrcrecordid>eNqF0LtOwzAYhmELgWgprIzIEgtLio9JPIaUk9SqAzBHjmMLV0lT7KQoG5fANXIlpGopEguTl8evfn0AnGM0xgiRa1lUckwQoYgQLA7AEHOCA4YEPwRDJCgPRMjiATjxfoEQEiEKj8GARhiHgrEhSJMlTFxjjVVWlnBeGqma2nXwqfONruCN9LqA9RJKmL7qyn59fM505axv7FrDiV5bpU_BkZGl12e7dwRe7m6f04dgOr9_TJNpoBimIohYSEKuI6NkzrA0wjBOiRJG0qLgPM-pwTIupCAEMRlHDDFlSITivIgLqjQdgattd-Xqt1b7JqusV7os5VLXrc9IjCKBw5iznl7-oYu6dcv-ul5xERJCo40ab5VytfdOm2zlbCVdl2GUbebNNvNm-3n7Dxe7bJtXutjznz17ILbg3Za6-yeXJZNZ8hv_BsuQhcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859622374</pqid></control><display><type>article</type><title>An Artificial Olfactory System Based on a Chemi‐Memristive Device</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chun, Suk Yeop ; Song, Young Geun ; Kim, Ji Eun ; Kwon, Jae Uk ; Soh, Keunho ; Kwon, Ju Young ; Kang, Chong‐Yun ; Yoon, Jung Ho</creator><creatorcontrib>Chun, Suk Yeop ; Song, Young Geun ; Kim, Ji Eun ; Kwon, Jae Uk ; Soh, Keunho ; Kwon, Ju Young ; Kang, Chong‐Yun ; Yoon, Jung Ho</creatorcontrib><description>Technologies based on the fusion of gas sensors and neuromorphic computing to mimic the olfactory system have immense potential. However, the implementation of neuromorphic olfactory systems remains in a state of infancy because conventional gas sensors lack the necessary functions. Therefore, this study proposes a hysteretic “chemi‐memristive gas sensor” based on oxygen vacancy chemi‐memristive dynamics that differ from that of conventional gas sensors. After the memristive switching operation, the redox reaction with the external gas molecules is enhanced, resulting in the generation and elimination of oxygen vacancies that induce rapid current changes. In addition, the pre‐generated oxygen vacancies enhance the post‐sensing properties. Therefore, fast responses, short recovery times, and hysteretic gas response are achieved by the proposed sensor at room temperature. Based on the advantageous functionality of the sensor, device‐level olfactory systems that can monitor the history of input gas stimuli are experimentally demonstrated as a potential application. Moreover, analog conductance modulation induced by oxidizing and reducing gases enables the conversion of external gas stimuli into synaptic weights and hence the realization of typical synaptic functionalities without an additional device or circuit. The proposed chemi‐memristive device represents an advance in the bioinspired technology adopted in creating artificial intelligence systems.
A hysteretic chemi‐memristive gas sensor containing TiO2‐nanorod memristors based on oxygen vacancy dynamics different from that of conventional sensors is developed. Analog conductance modulation based on the redox reaction with external gas molecules in a ruptured filament area after memristive switching converts external gas stimuli into synaptic weights to realize an artificial olfactory system.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202302219</identifier><identifier>PMID: 37116944</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Artificial intelligence ; artificial olfactory systems ; Biomimetics ; Circuits ; Gas sensors ; Gases ; Hysteresis ; Memory devices ; memristors ; Neuromorphic computing ; olfactory synapses ; Oxidation ; Oxygen ; Redox reactions ; Room temperature ; Sensors ; Stimuli</subject><ispartof>Advanced materials (Weinheim), 2023-09, Vol.35 (35), p.e2302219-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-746265e7fcab41af9f4532c9fa3dd55bb3f1a8da92204a87404cf2708bd8d3ce3</citedby><cites>FETCH-LOGICAL-c4139-746265e7fcab41af9f4532c9fa3dd55bb3f1a8da92204a87404cf2708bd8d3ce3</cites><orcidid>0000-0002-2239-3680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202302219$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202302219$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37116944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chun, Suk Yeop</creatorcontrib><creatorcontrib>Song, Young Geun</creatorcontrib><creatorcontrib>Kim, Ji Eun</creatorcontrib><creatorcontrib>Kwon, Jae Uk</creatorcontrib><creatorcontrib>Soh, Keunho</creatorcontrib><creatorcontrib>Kwon, Ju Young</creatorcontrib><creatorcontrib>Kang, Chong‐Yun</creatorcontrib><creatorcontrib>Yoon, Jung Ho</creatorcontrib><title>An Artificial Olfactory System Based on a Chemi‐Memristive Device</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Technologies based on the fusion of gas sensors and neuromorphic computing to mimic the olfactory system have immense potential. However, the implementation of neuromorphic olfactory systems remains in a state of infancy because conventional gas sensors lack the necessary functions. Therefore, this study proposes a hysteretic “chemi‐memristive gas sensor” based on oxygen vacancy chemi‐memristive dynamics that differ from that of conventional gas sensors. After the memristive switching operation, the redox reaction with the external gas molecules is enhanced, resulting in the generation and elimination of oxygen vacancies that induce rapid current changes. In addition, the pre‐generated oxygen vacancies enhance the post‐sensing properties. Therefore, fast responses, short recovery times, and hysteretic gas response are achieved by the proposed sensor at room temperature. Based on the advantageous functionality of the sensor, device‐level olfactory systems that can monitor the history of input gas stimuli are experimentally demonstrated as a potential application. Moreover, analog conductance modulation induced by oxidizing and reducing gases enables the conversion of external gas stimuli into synaptic weights and hence the realization of typical synaptic functionalities without an additional device or circuit. The proposed chemi‐memristive device represents an advance in the bioinspired technology adopted in creating artificial intelligence systems.
A hysteretic chemi‐memristive gas sensor containing TiO2‐nanorod memristors based on oxygen vacancy dynamics different from that of conventional sensors is developed. Analog conductance modulation based on the redox reaction with external gas molecules in a ruptured filament area after memristive switching converts external gas stimuli into synaptic weights to realize an artificial olfactory system.</description><subject>Artificial intelligence</subject><subject>artificial olfactory systems</subject><subject>Biomimetics</subject><subject>Circuits</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Hysteresis</subject><subject>Memory devices</subject><subject>memristors</subject><subject>Neuromorphic computing</subject><subject>olfactory synapses</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Redox reactions</subject><subject>Room temperature</subject><subject>Sensors</subject><subject>Stimuli</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0LtOwzAYhmELgWgprIzIEgtLio9JPIaUk9SqAzBHjmMLV0lT7KQoG5fANXIlpGopEguTl8evfn0AnGM0xgiRa1lUckwQoYgQLA7AEHOCA4YEPwRDJCgPRMjiATjxfoEQEiEKj8GARhiHgrEhSJMlTFxjjVVWlnBeGqma2nXwqfONruCN9LqA9RJKmL7qyn59fM505axv7FrDiV5bpU_BkZGl12e7dwRe7m6f04dgOr9_TJNpoBimIohYSEKuI6NkzrA0wjBOiRJG0qLgPM-pwTIupCAEMRlHDDFlSITivIgLqjQdgattd-Xqt1b7JqusV7os5VLXrc9IjCKBw5iznl7-oYu6dcv-ul5xERJCo40ab5VytfdOm2zlbCVdl2GUbebNNvNm-3n7Dxe7bJtXutjznz17ILbg3Za6-yeXJZNZ8hv_BsuQhcM</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Chun, Suk Yeop</creator><creator>Song, Young Geun</creator><creator>Kim, Ji Eun</creator><creator>Kwon, Jae Uk</creator><creator>Soh, Keunho</creator><creator>Kwon, Ju Young</creator><creator>Kang, Chong‐Yun</creator><creator>Yoon, Jung Ho</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2239-3680</orcidid></search><sort><creationdate>20230901</creationdate><title>An Artificial Olfactory System Based on a Chemi‐Memristive Device</title><author>Chun, Suk Yeop ; Song, Young Geun ; Kim, Ji Eun ; Kwon, Jae Uk ; Soh, Keunho ; Kwon, Ju Young ; Kang, Chong‐Yun ; Yoon, Jung Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-746265e7fcab41af9f4532c9fa3dd55bb3f1a8da92204a87404cf2708bd8d3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>artificial olfactory systems</topic><topic>Biomimetics</topic><topic>Circuits</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Hysteresis</topic><topic>Memory devices</topic><topic>memristors</topic><topic>Neuromorphic computing</topic><topic>olfactory synapses</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Redox reactions</topic><topic>Room temperature</topic><topic>Sensors</topic><topic>Stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, Suk Yeop</creatorcontrib><creatorcontrib>Song, Young Geun</creatorcontrib><creatorcontrib>Kim, Ji Eun</creatorcontrib><creatorcontrib>Kwon, Jae Uk</creatorcontrib><creatorcontrib>Soh, Keunho</creatorcontrib><creatorcontrib>Kwon, Ju Young</creatorcontrib><creatorcontrib>Kang, Chong‐Yun</creatorcontrib><creatorcontrib>Yoon, Jung Ho</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Suk Yeop</au><au>Song, Young Geun</au><au>Kim, Ji Eun</au><au>Kwon, Jae Uk</au><au>Soh, Keunho</au><au>Kwon, Ju Young</au><au>Kang, Chong‐Yun</au><au>Yoon, Jung Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Olfactory System Based on a Chemi‐Memristive Device</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>35</volume><issue>35</issue><spage>e2302219</spage><epage>n/a</epage><pages>e2302219-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Technologies based on the fusion of gas sensors and neuromorphic computing to mimic the olfactory system have immense potential. However, the implementation of neuromorphic olfactory systems remains in a state of infancy because conventional gas sensors lack the necessary functions. Therefore, this study proposes a hysteretic “chemi‐memristive gas sensor” based on oxygen vacancy chemi‐memristive dynamics that differ from that of conventional gas sensors. After the memristive switching operation, the redox reaction with the external gas molecules is enhanced, resulting in the generation and elimination of oxygen vacancies that induce rapid current changes. In addition, the pre‐generated oxygen vacancies enhance the post‐sensing properties. Therefore, fast responses, short recovery times, and hysteretic gas response are achieved by the proposed sensor at room temperature. Based on the advantageous functionality of the sensor, device‐level olfactory systems that can monitor the history of input gas stimuli are experimentally demonstrated as a potential application. Moreover, analog conductance modulation induced by oxidizing and reducing gases enables the conversion of external gas stimuli into synaptic weights and hence the realization of typical synaptic functionalities without an additional device or circuit. The proposed chemi‐memristive device represents an advance in the bioinspired technology adopted in creating artificial intelligence systems.
A hysteretic chemi‐memristive gas sensor containing TiO2‐nanorod memristors based on oxygen vacancy dynamics different from that of conventional sensors is developed. Analog conductance modulation based on the redox reaction with external gas molecules in a ruptured filament area after memristive switching converts external gas stimuli into synaptic weights to realize an artificial olfactory system.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37116944</pmid><doi>10.1002/adma.202302219</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2239-3680</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-09, Vol.35 (35), p.e2302219-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2807916854 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Artificial intelligence artificial olfactory systems Biomimetics Circuits Gas sensors Gases Hysteresis Memory devices memristors Neuromorphic computing olfactory synapses Oxidation Oxygen Redox reactions Room temperature Sensors Stimuli |
title | An Artificial Olfactory System Based on a Chemi‐Memristive Device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Olfactory%20System%20Based%20on%20a%20Chemi%E2%80%90Memristive%20Device&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chun,%20Suk%20Yeop&rft.date=2023-09-01&rft.volume=35&rft.issue=35&rft.spage=e2302219&rft.epage=n/a&rft.pages=e2302219-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202302219&rft_dat=%3Cproquest_cross%3E2807916854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859622374&rft_id=info:pmid/37116944&rfr_iscdi=true |