An Artificial Olfactory System Based on a Chemi‐Memristive Device

Technologies based on the fusion of gas sensors and neuromorphic computing to mimic the olfactory system have immense potential. However, the implementation of neuromorphic olfactory systems remains in a state of infancy because conventional gas sensors lack the necessary functions. Therefore, this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-09, Vol.35 (35), p.e2302219-n/a
Hauptverfasser: Chun, Suk Yeop, Song, Young Geun, Kim, Ji Eun, Kwon, Jae Uk, Soh, Keunho, Kwon, Ju Young, Kang, Chong‐Yun, Yoon, Jung Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 35
container_start_page e2302219
container_title Advanced materials (Weinheim)
container_volume 35
creator Chun, Suk Yeop
Song, Young Geun
Kim, Ji Eun
Kwon, Jae Uk
Soh, Keunho
Kwon, Ju Young
Kang, Chong‐Yun
Yoon, Jung Ho
description Technologies based on the fusion of gas sensors and neuromorphic computing to mimic the olfactory system have immense potential. However, the implementation of neuromorphic olfactory systems remains in a state of infancy because conventional gas sensors lack the necessary functions. Therefore, this study proposes a hysteretic “chemi‐memristive gas sensor” based on oxygen vacancy chemi‐memristive dynamics that differ from that of conventional gas sensors. After the memristive switching operation, the redox reaction with the external gas molecules is enhanced, resulting in the generation and elimination of oxygen vacancies that induce rapid current changes. In addition, the pre‐generated oxygen vacancies enhance the post‐sensing properties. Therefore, fast responses, short recovery times, and hysteretic gas response are achieved by the proposed sensor at room temperature. Based on the advantageous functionality of the sensor, device‐level olfactory systems that can monitor the history of input gas stimuli are experimentally demonstrated as a potential application. Moreover, analog conductance modulation induced by oxidizing and reducing gases enables the conversion of external gas stimuli into synaptic weights and hence the realization of typical synaptic functionalities without an additional device or circuit. The proposed chemi‐memristive device represents an advance in the bioinspired technology adopted in creating artificial intelligence systems. A hysteretic chemi‐memristive gas sensor containing TiO2‐nanorod memristors based on oxygen vacancy dynamics different from that of conventional sensors is developed. Analog conductance modulation based on the redox reaction with external gas molecules in a ruptured filament area after memristive switching converts external gas stimuli into synaptic weights to realize an artificial olfactory system.
doi_str_mv 10.1002/adma.202302219
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2807916854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807916854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-746265e7fcab41af9f4532c9fa3dd55bb3f1a8da92204a87404cf2708bd8d3ce3</originalsourceid><addsrcrecordid>eNqF0LtOwzAYhmELgWgprIzIEgtLio9JPIaUk9SqAzBHjmMLV0lT7KQoG5fANXIlpGopEguTl8evfn0AnGM0xgiRa1lUckwQoYgQLA7AEHOCA4YEPwRDJCgPRMjiATjxfoEQEiEKj8GARhiHgrEhSJMlTFxjjVVWlnBeGqma2nXwqfONruCN9LqA9RJKmL7qyn59fM505axv7FrDiV5bpU_BkZGl12e7dwRe7m6f04dgOr9_TJNpoBimIohYSEKuI6NkzrA0wjBOiRJG0qLgPM-pwTIupCAEMRlHDDFlSITivIgLqjQdgattd-Xqt1b7JqusV7os5VLXrc9IjCKBw5iznl7-oYu6dcv-ul5xERJCo40ab5VytfdOm2zlbCVdl2GUbebNNvNm-3n7Dxe7bJtXutjznz17ILbg3Za6-yeXJZNZ8hv_BsuQhcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859622374</pqid></control><display><type>article</type><title>An Artificial Olfactory System Based on a Chemi‐Memristive Device</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chun, Suk Yeop ; Song, Young Geun ; Kim, Ji Eun ; Kwon, Jae Uk ; Soh, Keunho ; Kwon, Ju Young ; Kang, Chong‐Yun ; Yoon, Jung Ho</creator><creatorcontrib>Chun, Suk Yeop ; Song, Young Geun ; Kim, Ji Eun ; Kwon, Jae Uk ; Soh, Keunho ; Kwon, Ju Young ; Kang, Chong‐Yun ; Yoon, Jung Ho</creatorcontrib><description>Technologies based on the fusion of gas sensors and neuromorphic computing to mimic the olfactory system have immense potential. However, the implementation of neuromorphic olfactory systems remains in a state of infancy because conventional gas sensors lack the necessary functions. Therefore, this study proposes a hysteretic “chemi‐memristive gas sensor” based on oxygen vacancy chemi‐memristive dynamics that differ from that of conventional gas sensors. After the memristive switching operation, the redox reaction with the external gas molecules is enhanced, resulting in the generation and elimination of oxygen vacancies that induce rapid current changes. In addition, the pre‐generated oxygen vacancies enhance the post‐sensing properties. Therefore, fast responses, short recovery times, and hysteretic gas response are achieved by the proposed sensor at room temperature. Based on the advantageous functionality of the sensor, device‐level olfactory systems that can monitor the history of input gas stimuli are experimentally demonstrated as a potential application. Moreover, analog conductance modulation induced by oxidizing and reducing gases enables the conversion of external gas stimuli into synaptic weights and hence the realization of typical synaptic functionalities without an additional device or circuit. The proposed chemi‐memristive device represents an advance in the bioinspired technology adopted in creating artificial intelligence systems. A hysteretic chemi‐memristive gas sensor containing TiO2‐nanorod memristors based on oxygen vacancy dynamics different from that of conventional sensors is developed. Analog conductance modulation based on the redox reaction with external gas molecules in a ruptured filament area after memristive switching converts external gas stimuli into synaptic weights to realize an artificial olfactory system.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202302219</identifier><identifier>PMID: 37116944</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Artificial intelligence ; artificial olfactory systems ; Biomimetics ; Circuits ; Gas sensors ; Gases ; Hysteresis ; Memory devices ; memristors ; Neuromorphic computing ; olfactory synapses ; Oxidation ; Oxygen ; Redox reactions ; Room temperature ; Sensors ; Stimuli</subject><ispartof>Advanced materials (Weinheim), 2023-09, Vol.35 (35), p.e2302219-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-746265e7fcab41af9f4532c9fa3dd55bb3f1a8da92204a87404cf2708bd8d3ce3</citedby><cites>FETCH-LOGICAL-c4139-746265e7fcab41af9f4532c9fa3dd55bb3f1a8da92204a87404cf2708bd8d3ce3</cites><orcidid>0000-0002-2239-3680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202302219$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202302219$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37116944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chun, Suk Yeop</creatorcontrib><creatorcontrib>Song, Young Geun</creatorcontrib><creatorcontrib>Kim, Ji Eun</creatorcontrib><creatorcontrib>Kwon, Jae Uk</creatorcontrib><creatorcontrib>Soh, Keunho</creatorcontrib><creatorcontrib>Kwon, Ju Young</creatorcontrib><creatorcontrib>Kang, Chong‐Yun</creatorcontrib><creatorcontrib>Yoon, Jung Ho</creatorcontrib><title>An Artificial Olfactory System Based on a Chemi‐Memristive Device</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Technologies based on the fusion of gas sensors and neuromorphic computing to mimic the olfactory system have immense potential. However, the implementation of neuromorphic olfactory systems remains in a state of infancy because conventional gas sensors lack the necessary functions. Therefore, this study proposes a hysteretic “chemi‐memristive gas sensor” based on oxygen vacancy chemi‐memristive dynamics that differ from that of conventional gas sensors. After the memristive switching operation, the redox reaction with the external gas molecules is enhanced, resulting in the generation and elimination of oxygen vacancies that induce rapid current changes. In addition, the pre‐generated oxygen vacancies enhance the post‐sensing properties. Therefore, fast responses, short recovery times, and hysteretic gas response are achieved by the proposed sensor at room temperature. Based on the advantageous functionality of the sensor, device‐level olfactory systems that can monitor the history of input gas stimuli are experimentally demonstrated as a potential application. Moreover, analog conductance modulation induced by oxidizing and reducing gases enables the conversion of external gas stimuli into synaptic weights and hence the realization of typical synaptic functionalities without an additional device or circuit. The proposed chemi‐memristive device represents an advance in the bioinspired technology adopted in creating artificial intelligence systems. A hysteretic chemi‐memristive gas sensor containing TiO2‐nanorod memristors based on oxygen vacancy dynamics different from that of conventional sensors is developed. Analog conductance modulation based on the redox reaction with external gas molecules in a ruptured filament area after memristive switching converts external gas stimuli into synaptic weights to realize an artificial olfactory system.</description><subject>Artificial intelligence</subject><subject>artificial olfactory systems</subject><subject>Biomimetics</subject><subject>Circuits</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Hysteresis</subject><subject>Memory devices</subject><subject>memristors</subject><subject>Neuromorphic computing</subject><subject>olfactory synapses</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Redox reactions</subject><subject>Room temperature</subject><subject>Sensors</subject><subject>Stimuli</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0LtOwzAYhmELgWgprIzIEgtLio9JPIaUk9SqAzBHjmMLV0lT7KQoG5fANXIlpGopEguTl8evfn0AnGM0xgiRa1lUckwQoYgQLA7AEHOCA4YEPwRDJCgPRMjiATjxfoEQEiEKj8GARhiHgrEhSJMlTFxjjVVWlnBeGqma2nXwqfONruCN9LqA9RJKmL7qyn59fM505axv7FrDiV5bpU_BkZGl12e7dwRe7m6f04dgOr9_TJNpoBimIohYSEKuI6NkzrA0wjBOiRJG0qLgPM-pwTIupCAEMRlHDDFlSITivIgLqjQdgattd-Xqt1b7JqusV7os5VLXrc9IjCKBw5iznl7-oYu6dcv-ul5xERJCo40ab5VytfdOm2zlbCVdl2GUbebNNvNm-3n7Dxe7bJtXutjznz17ILbg3Za6-yeXJZNZ8hv_BsuQhcM</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Chun, Suk Yeop</creator><creator>Song, Young Geun</creator><creator>Kim, Ji Eun</creator><creator>Kwon, Jae Uk</creator><creator>Soh, Keunho</creator><creator>Kwon, Ju Young</creator><creator>Kang, Chong‐Yun</creator><creator>Yoon, Jung Ho</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2239-3680</orcidid></search><sort><creationdate>20230901</creationdate><title>An Artificial Olfactory System Based on a Chemi‐Memristive Device</title><author>Chun, Suk Yeop ; Song, Young Geun ; Kim, Ji Eun ; Kwon, Jae Uk ; Soh, Keunho ; Kwon, Ju Young ; Kang, Chong‐Yun ; Yoon, Jung Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-746265e7fcab41af9f4532c9fa3dd55bb3f1a8da92204a87404cf2708bd8d3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>artificial olfactory systems</topic><topic>Biomimetics</topic><topic>Circuits</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Hysteresis</topic><topic>Memory devices</topic><topic>memristors</topic><topic>Neuromorphic computing</topic><topic>olfactory synapses</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Redox reactions</topic><topic>Room temperature</topic><topic>Sensors</topic><topic>Stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, Suk Yeop</creatorcontrib><creatorcontrib>Song, Young Geun</creatorcontrib><creatorcontrib>Kim, Ji Eun</creatorcontrib><creatorcontrib>Kwon, Jae Uk</creatorcontrib><creatorcontrib>Soh, Keunho</creatorcontrib><creatorcontrib>Kwon, Ju Young</creatorcontrib><creatorcontrib>Kang, Chong‐Yun</creatorcontrib><creatorcontrib>Yoon, Jung Ho</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Suk Yeop</au><au>Song, Young Geun</au><au>Kim, Ji Eun</au><au>Kwon, Jae Uk</au><au>Soh, Keunho</au><au>Kwon, Ju Young</au><au>Kang, Chong‐Yun</au><au>Yoon, Jung Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Olfactory System Based on a Chemi‐Memristive Device</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>35</volume><issue>35</issue><spage>e2302219</spage><epage>n/a</epage><pages>e2302219-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Technologies based on the fusion of gas sensors and neuromorphic computing to mimic the olfactory system have immense potential. However, the implementation of neuromorphic olfactory systems remains in a state of infancy because conventional gas sensors lack the necessary functions. Therefore, this study proposes a hysteretic “chemi‐memristive gas sensor” based on oxygen vacancy chemi‐memristive dynamics that differ from that of conventional gas sensors. After the memristive switching operation, the redox reaction with the external gas molecules is enhanced, resulting in the generation and elimination of oxygen vacancies that induce rapid current changes. In addition, the pre‐generated oxygen vacancies enhance the post‐sensing properties. Therefore, fast responses, short recovery times, and hysteretic gas response are achieved by the proposed sensor at room temperature. Based on the advantageous functionality of the sensor, device‐level olfactory systems that can monitor the history of input gas stimuli are experimentally demonstrated as a potential application. Moreover, analog conductance modulation induced by oxidizing and reducing gases enables the conversion of external gas stimuli into synaptic weights and hence the realization of typical synaptic functionalities without an additional device or circuit. The proposed chemi‐memristive device represents an advance in the bioinspired technology adopted in creating artificial intelligence systems. A hysteretic chemi‐memristive gas sensor containing TiO2‐nanorod memristors based on oxygen vacancy dynamics different from that of conventional sensors is developed. Analog conductance modulation based on the redox reaction with external gas molecules in a ruptured filament area after memristive switching converts external gas stimuli into synaptic weights to realize an artificial olfactory system.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37116944</pmid><doi>10.1002/adma.202302219</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2239-3680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-09, Vol.35 (35), p.e2302219-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2807916854
source Wiley Online Library Journals Frontfile Complete
subjects Artificial intelligence
artificial olfactory systems
Biomimetics
Circuits
Gas sensors
Gases
Hysteresis
Memory devices
memristors
Neuromorphic computing
olfactory synapses
Oxidation
Oxygen
Redox reactions
Room temperature
Sensors
Stimuli
title An Artificial Olfactory System Based on a Chemi‐Memristive Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Olfactory%20System%20Based%20on%20a%20Chemi%E2%80%90Memristive%20Device&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chun,%20Suk%20Yeop&rft.date=2023-09-01&rft.volume=35&rft.issue=35&rft.spage=e2302219&rft.epage=n/a&rft.pages=e2302219-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202302219&rft_dat=%3Cproquest_cross%3E2807916854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859622374&rft_id=info:pmid/37116944&rfr_iscdi=true