Differentiation of giant cell tumours of bone, primary aneurysmal bone cysts, and aneurysmal bone cysts secondary to giant cell tumour of bone: using whole-tumour CT texture analysis parameters as quantitative biomarkers
To determine whether computed tomography (CT) texture analysis parameters can be used as quantitative biomarkers to help differentiate giant cell tumour of bones (GCTs), primary aneurysmal bone cysts (PABCs), and aneurysmal bone cysts (ABCs) secondary to giant cell tumours of bone (GABCs). One hundr...
Gespeichert in:
Veröffentlicht in: | Clinical radiology 2023-07, Vol.78 (7), p.532-539 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539 |
---|---|
container_issue | 7 |
container_start_page | 532 |
container_title | Clinical radiology |
container_volume | 78 |
creator | Wang, J.-Y. Sun, D. Liu, C.-Y. Hou, B.-W. Li, Y.-T. Hu, S. Zhang, Y. Morelli, J.N. Li, X.-M. |
description | To determine whether computed tomography (CT) texture analysis parameters can be used as quantitative biomarkers to help differentiate giant cell tumour of bones (GCTs), primary aneurysmal bone cysts (PABCs), and aneurysmal bone cysts (ABCs) secondary to giant cell tumours of bone (GABCs).
One hundred and seven patients with 63 GCTs, 31 PABCs, and 13 GABCs were analysed retrospectively. All patients underwent preoperative CT. Two radiologists independently evaluated the qualitative features of the CT images and extracted texture parameters. Patient demographics, qualitative features, and texture parameters among GCTs, PABCs, and GABCs were compared statistically. Differences in these parameters between ABCs and GCTs were also assessed. ROC curves were obtained to determine optimal parameter values.
The best preoperative CT parameters to differentiate GCTs, PABCs, and GABCs included one qualitative feature (location around the knee) and four texture parameters (95th percentile, maximum intensity, skewness, and kurtosis). Age and three texture parameters (5th percentile, inhomogeneity, and kurtosis) enabled statistically significant differentiation between GCTs and ABCs. Combination of the above four parameters generated the largest area under the ROC curve (AUC) for the differentiation of GCTs and ABCs.
CT texture analysis parameters can be used as quantitative biomarkers for preoperative differentiation among GCTs, PABCs, and GABCs.
•The main method used in this study was CT texture analysis.•CT texture analysis can help enable more accurate preoperative differentiation.•Texture parameters may help guide the appropriate selection of treatment methods. |
doi_str_mv | 10.1016/j.crad.2023.03.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2807915881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000992602300096X</els_id><sourcerecordid>2807915881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-cbcd256d7a4e13de89372ae99819d15327432a0c6f5292872b7e7982ef8c202d3</originalsourceid><addsrcrecordid>eNp9Uctu1DAUtRAVHQo_wAJ5yaKZ-pHEMWKDhlelSmyKxM5y7JviIYmnfhTmX_mYOsyUDQjpSpbvOffcx0HoBSVrSmh7sV2boO2aEcbXpASpH6EV5W1TMSa_PkYrQoisJGvJKXoa43b51qx-gk65oFSQWq7Qr3duGCDAnJxOzs_YD_jG6TlhA-OIU558DnHJ9n6Gc7wLbtJhj_UMOezjpMffADb7mOJ5Sdt_QziC8bNdSpP_u8NDg9c4Rzff4B_f_AjVEdtc4wQ_Uw5QtPW4jy7inQ56ggRlNh3xbS56LpUN7gD3zpcRvxfoGToZ9Bjh-fE9Q18-vL_efKquPn-83Ly9qgxv2lSZ3ljWtFboGii30EkumAYpOyotbTgTNWeamHZomGSdYL0AITsGQ2fK8S0_Q68OurvgbzPEpCYXl-3KKXyOinVESNp0HS1UdqCa4GMMMKjjRRUlanFVbdXiqlpcVaQEqUvRy6N-7iewf0oebCyENwcClC3vHAQVjYPZgHUBTFLWu__p3wN8-7ml</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807915881</pqid></control><display><type>article</type><title>Differentiation of giant cell tumours of bone, primary aneurysmal bone cysts, and aneurysmal bone cysts secondary to giant cell tumour of bone: using whole-tumour CT texture analysis parameters as quantitative biomarkers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, J.-Y. ; Sun, D. ; Liu, C.-Y. ; Hou, B.-W. ; Li, Y.-T. ; Hu, S. ; Zhang, Y. ; Morelli, J.N. ; Li, X.-M.</creator><creatorcontrib>Wang, J.-Y. ; Sun, D. ; Liu, C.-Y. ; Hou, B.-W. ; Li, Y.-T. ; Hu, S. ; Zhang, Y. ; Morelli, J.N. ; Li, X.-M.</creatorcontrib><description>To determine whether computed tomography (CT) texture analysis parameters can be used as quantitative biomarkers to help differentiate giant cell tumour of bones (GCTs), primary aneurysmal bone cysts (PABCs), and aneurysmal bone cysts (ABCs) secondary to giant cell tumours of bone (GABCs).
One hundred and seven patients with 63 GCTs, 31 PABCs, and 13 GABCs were analysed retrospectively. All patients underwent preoperative CT. Two radiologists independently evaluated the qualitative features of the CT images and extracted texture parameters. Patient demographics, qualitative features, and texture parameters among GCTs, PABCs, and GABCs were compared statistically. Differences in these parameters between ABCs and GCTs were also assessed. ROC curves were obtained to determine optimal parameter values.
The best preoperative CT parameters to differentiate GCTs, PABCs, and GABCs included one qualitative feature (location around the knee) and four texture parameters (95th percentile, maximum intensity, skewness, and kurtosis). Age and three texture parameters (5th percentile, inhomogeneity, and kurtosis) enabled statistically significant differentiation between GCTs and ABCs. Combination of the above four parameters generated the largest area under the ROC curve (AUC) for the differentiation of GCTs and ABCs.
CT texture analysis parameters can be used as quantitative biomarkers for preoperative differentiation among GCTs, PABCs, and GABCs.
•The main method used in this study was CT texture analysis.•CT texture analysis can help enable more accurate preoperative differentiation.•Texture parameters may help guide the appropriate selection of treatment methods.</description><identifier>ISSN: 0009-9260</identifier><identifier>EISSN: 1365-229X</identifier><identifier>DOI: 10.1016/j.crad.2023.03.004</identifier><identifier>PMID: 37117049</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biomarkers ; Bone Cysts, Aneurysmal - complications ; Bone Cysts, Aneurysmal - diagnostic imaging ; Bone Neoplasms - pathology ; Giant Cell Tumor of Bone - complications ; Giant Cell Tumor of Bone - diagnostic imaging ; Humans ; Retrospective Studies ; Tomography, X-Ray Computed - methods</subject><ispartof>Clinical radiology, 2023-07, Vol.78 (7), p.532-539</ispartof><rights>2023 The Royal College of Radiologists</rights><rights>Copyright © 2023 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-cbcd256d7a4e13de89372ae99819d15327432a0c6f5292872b7e7982ef8c202d3</citedby><cites>FETCH-LOGICAL-c356t-cbcd256d7a4e13de89372ae99819d15327432a0c6f5292872b7e7982ef8c202d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000992602300096X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37117049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, J.-Y.</creatorcontrib><creatorcontrib>Sun, D.</creatorcontrib><creatorcontrib>Liu, C.-Y.</creatorcontrib><creatorcontrib>Hou, B.-W.</creatorcontrib><creatorcontrib>Li, Y.-T.</creatorcontrib><creatorcontrib>Hu, S.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Morelli, J.N.</creatorcontrib><creatorcontrib>Li, X.-M.</creatorcontrib><title>Differentiation of giant cell tumours of bone, primary aneurysmal bone cysts, and aneurysmal bone cysts secondary to giant cell tumour of bone: using whole-tumour CT texture analysis parameters as quantitative biomarkers</title><title>Clinical radiology</title><addtitle>Clin Radiol</addtitle><description>To determine whether computed tomography (CT) texture analysis parameters can be used as quantitative biomarkers to help differentiate giant cell tumour of bones (GCTs), primary aneurysmal bone cysts (PABCs), and aneurysmal bone cysts (ABCs) secondary to giant cell tumours of bone (GABCs).
One hundred and seven patients with 63 GCTs, 31 PABCs, and 13 GABCs were analysed retrospectively. All patients underwent preoperative CT. Two radiologists independently evaluated the qualitative features of the CT images and extracted texture parameters. Patient demographics, qualitative features, and texture parameters among GCTs, PABCs, and GABCs were compared statistically. Differences in these parameters between ABCs and GCTs were also assessed. ROC curves were obtained to determine optimal parameter values.
The best preoperative CT parameters to differentiate GCTs, PABCs, and GABCs included one qualitative feature (location around the knee) and four texture parameters (95th percentile, maximum intensity, skewness, and kurtosis). Age and three texture parameters (5th percentile, inhomogeneity, and kurtosis) enabled statistically significant differentiation between GCTs and ABCs. Combination of the above four parameters generated the largest area under the ROC curve (AUC) for the differentiation of GCTs and ABCs.
CT texture analysis parameters can be used as quantitative biomarkers for preoperative differentiation among GCTs, PABCs, and GABCs.
•The main method used in this study was CT texture analysis.•CT texture analysis can help enable more accurate preoperative differentiation.•Texture parameters may help guide the appropriate selection of treatment methods.</description><subject>Biomarkers</subject><subject>Bone Cysts, Aneurysmal - complications</subject><subject>Bone Cysts, Aneurysmal - diagnostic imaging</subject><subject>Bone Neoplasms - pathology</subject><subject>Giant Cell Tumor of Bone - complications</subject><subject>Giant Cell Tumor of Bone - diagnostic imaging</subject><subject>Humans</subject><subject>Retrospective Studies</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0009-9260</issn><issn>1365-229X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uctu1DAUtRAVHQo_wAJ5yaKZ-pHEMWKDhlelSmyKxM5y7JviIYmnfhTmX_mYOsyUDQjpSpbvOffcx0HoBSVrSmh7sV2boO2aEcbXpASpH6EV5W1TMSa_PkYrQoisJGvJKXoa43b51qx-gk65oFSQWq7Qr3duGCDAnJxOzs_YD_jG6TlhA-OIU558DnHJ9n6Gc7wLbtJhj_UMOezjpMffADb7mOJ5Sdt_QziC8bNdSpP_u8NDg9c4Rzff4B_f_AjVEdtc4wQ_Uw5QtPW4jy7inQ56ggRlNh3xbS56LpUN7gD3zpcRvxfoGToZ9Bjh-fE9Q18-vL_efKquPn-83Ly9qgxv2lSZ3ljWtFboGii30EkumAYpOyotbTgTNWeamHZomGSdYL0AITsGQ2fK8S0_Q68OurvgbzPEpCYXl-3KKXyOinVESNp0HS1UdqCa4GMMMKjjRRUlanFVbdXiqlpcVaQEqUvRy6N-7iewf0oebCyENwcClC3vHAQVjYPZgHUBTFLWu__p3wN8-7ml</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Wang, J.-Y.</creator><creator>Sun, D.</creator><creator>Liu, C.-Y.</creator><creator>Hou, B.-W.</creator><creator>Li, Y.-T.</creator><creator>Hu, S.</creator><creator>Zhang, Y.</creator><creator>Morelli, J.N.</creator><creator>Li, X.-M.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202307</creationdate><title>Differentiation of giant cell tumours of bone, primary aneurysmal bone cysts, and aneurysmal bone cysts secondary to giant cell tumour of bone: using whole-tumour CT texture analysis parameters as quantitative biomarkers</title><author>Wang, J.-Y. ; Sun, D. ; Liu, C.-Y. ; Hou, B.-W. ; Li, Y.-T. ; Hu, S. ; Zhang, Y. ; Morelli, J.N. ; Li, X.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-cbcd256d7a4e13de89372ae99819d15327432a0c6f5292872b7e7982ef8c202d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Bone Cysts, Aneurysmal - complications</topic><topic>Bone Cysts, Aneurysmal - diagnostic imaging</topic><topic>Bone Neoplasms - pathology</topic><topic>Giant Cell Tumor of Bone - complications</topic><topic>Giant Cell Tumor of Bone - diagnostic imaging</topic><topic>Humans</topic><topic>Retrospective Studies</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, J.-Y.</creatorcontrib><creatorcontrib>Sun, D.</creatorcontrib><creatorcontrib>Liu, C.-Y.</creatorcontrib><creatorcontrib>Hou, B.-W.</creatorcontrib><creatorcontrib>Li, Y.-T.</creatorcontrib><creatorcontrib>Hu, S.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Morelli, J.N.</creatorcontrib><creatorcontrib>Li, X.-M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, J.-Y.</au><au>Sun, D.</au><au>Liu, C.-Y.</au><au>Hou, B.-W.</au><au>Li, Y.-T.</au><au>Hu, S.</au><au>Zhang, Y.</au><au>Morelli, J.N.</au><au>Li, X.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiation of giant cell tumours of bone, primary aneurysmal bone cysts, and aneurysmal bone cysts secondary to giant cell tumour of bone: using whole-tumour CT texture analysis parameters as quantitative biomarkers</atitle><jtitle>Clinical radiology</jtitle><addtitle>Clin Radiol</addtitle><date>2023-07</date><risdate>2023</risdate><volume>78</volume><issue>7</issue><spage>532</spage><epage>539</epage><pages>532-539</pages><issn>0009-9260</issn><eissn>1365-229X</eissn><abstract>To determine whether computed tomography (CT) texture analysis parameters can be used as quantitative biomarkers to help differentiate giant cell tumour of bones (GCTs), primary aneurysmal bone cysts (PABCs), and aneurysmal bone cysts (ABCs) secondary to giant cell tumours of bone (GABCs).
One hundred and seven patients with 63 GCTs, 31 PABCs, and 13 GABCs were analysed retrospectively. All patients underwent preoperative CT. Two radiologists independently evaluated the qualitative features of the CT images and extracted texture parameters. Patient demographics, qualitative features, and texture parameters among GCTs, PABCs, and GABCs were compared statistically. Differences in these parameters between ABCs and GCTs were also assessed. ROC curves were obtained to determine optimal parameter values.
The best preoperative CT parameters to differentiate GCTs, PABCs, and GABCs included one qualitative feature (location around the knee) and four texture parameters (95th percentile, maximum intensity, skewness, and kurtosis). Age and three texture parameters (5th percentile, inhomogeneity, and kurtosis) enabled statistically significant differentiation between GCTs and ABCs. Combination of the above four parameters generated the largest area under the ROC curve (AUC) for the differentiation of GCTs and ABCs.
CT texture analysis parameters can be used as quantitative biomarkers for preoperative differentiation among GCTs, PABCs, and GABCs.
•The main method used in this study was CT texture analysis.•CT texture analysis can help enable more accurate preoperative differentiation.•Texture parameters may help guide the appropriate selection of treatment methods.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37117049</pmid><doi>10.1016/j.crad.2023.03.004</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9260 |
ispartof | Clinical radiology, 2023-07, Vol.78 (7), p.532-539 |
issn | 0009-9260 1365-229X |
language | eng |
recordid | cdi_proquest_miscellaneous_2807915881 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Biomarkers Bone Cysts, Aneurysmal - complications Bone Cysts, Aneurysmal - diagnostic imaging Bone Neoplasms - pathology Giant Cell Tumor of Bone - complications Giant Cell Tumor of Bone - diagnostic imaging Humans Retrospective Studies Tomography, X-Ray Computed - methods |
title | Differentiation of giant cell tumours of bone, primary aneurysmal bone cysts, and aneurysmal bone cysts secondary to giant cell tumour of bone: using whole-tumour CT texture analysis parameters as quantitative biomarkers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiation%20of%20giant%20cell%20tumours%20of%20bone,%20primary%20aneurysmal%20bone%20cysts,%20and%20aneurysmal%20bone%20cysts%20secondary%20to%20giant%20cell%20tumour%20of%20bone:%20using%20whole-tumour%20CT%20texture%20analysis%20parameters%20as%20quantitative%20biomarkers&rft.jtitle=Clinical%20radiology&rft.au=Wang,%20J.-Y.&rft.date=2023-07&rft.volume=78&rft.issue=7&rft.spage=532&rft.epage=539&rft.pages=532-539&rft.issn=0009-9260&rft.eissn=1365-229X&rft_id=info:doi/10.1016/j.crad.2023.03.004&rft_dat=%3Cproquest_cross%3E2807915881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807915881&rft_id=info:pmid/37117049&rft_els_id=S000992602300096X&rfr_iscdi=true |