Optimization of anastomotic technique and gastric conduit perfusion with hyperspectral imaging and machine learning in an experimental model for minimally invasive esophagectomy

Esophagectomy is the mainstay of esophageal cancer treatment, but anastomotic insufficiency related morbidity and mortality remain challenging for patient outcome. Therefore, the objective of this work was to optimize anastomotic technique and gastric conduit perfusion with hyperspectral imaging (HS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of surgical oncology 2025-01, Vol.51 (1), p.106908, Article 106908
Hauptverfasser: Nickel, F., Studier-Fischer, A., Özdemir, B., Odenthal, J., Müller, L.R., Knoedler, S., Kowalewski, K.F., Camplisson, I., Allers, M.M., Dietrich, M., Schmidt, K., Salg, G.A., Kenngott, H.G., Billeter, A.T., Gockel, I., Sagiv, C., Hadar, O.E., Gildenblat, J., Ayala, L., Seidlitz, S., Maier-Hein, L., Müller-Stich, B.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 106908
container_title European journal of surgical oncology
container_volume 51
creator Nickel, F.
Studier-Fischer, A.
Özdemir, B.
Odenthal, J.
Müller, L.R.
Knoedler, S.
Kowalewski, K.F.
Camplisson, I.
Allers, M.M.
Dietrich, M.
Schmidt, K.
Salg, G.A.
Kenngott, H.G.
Billeter, A.T.
Gockel, I.
Sagiv, C.
Hadar, O.E.
Gildenblat, J.
Ayala, L.
Seidlitz, S.
Maier-Hein, L.
Müller-Stich, B.P.
description Esophagectomy is the mainstay of esophageal cancer treatment, but anastomotic insufficiency related morbidity and mortality remain challenging for patient outcome. Therefore, the objective of this work was to optimize anastomotic technique and gastric conduit perfusion with hyperspectral imaging (HSI) for total minimally invasive esophagectomy (MIE) with linear stapled anastomosis. A live porcine model (n = 58) for MIE was used with gastric conduit formation and simulation of linear stapled side-to-side esophagogastrostomy. Four main experimental groups differed in stapling length (3 vs. 6 cm) and simulation of anastomotic position on the conduit (cranial vs. caudal). Tissue oxygenation around the anastomotic simulation site was evaluated using HSI and was validated with histopathology. The tissue oxygenation (ΔStO2) after the anastomotic simulation remained constant only for the short stapler in caudal position (−0.4 ± 4.4%, n.s.) while it was impaired markedly in the other groups (short-cranial: −15.6 ± 11.5%, p = 0.0002; long-cranial: −20.4 ± 7.6%, p = 0.0126; long-caudal: −16.1 ± 9.4%, p 
doi_str_mv 10.1016/j.ejso.2023.04.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2807913150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0748798323004444</els_id><sourcerecordid>2807913150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-97d7366da61fe7dfc8f865d369cd1a729b6ddcade407bbdad3148526d00367c33</originalsourceid><addsrcrecordid>eNp9kcGO1DAQRC0EYmcXfoAD8pFLgh0ndiJxQStgkVbaC5wtj92ZeBTbwXYGhr_iD3GYhSOnlqpfldRdCL2ipKaE8rfHGo4p1A1pWE3amhDxBO1ox5qqoZ14inZEtH0lhp5doeuUjoSQgYnhObpigpKu58MO_XpYsnX2p8o2eBxGrLxKObiQrcYZ9OTttxWKavChLGJRdfBmtRkvEMc1bbbvNk94OhchLaBzVDO2Th2sP_wxOqUn6wHPoKLfROuLjuFHMVgHPhfeBQMzHkPEzvpinudzwU4q2RNgSGGZ1KFEB3d-gZ6Nak7w8nHeoK8fP3y5vavuHz59vn1_X-mWkFwNwgjGuVGcjiDMqPux551hfNCGKtEMe26MVgZaIvZ7owyjbd813BDCuNCM3aA3l9wlhvKClKWzScM8Kw9hTbLpiRgoox0paHNBdQwpRRjlUg5T8SwpkVtV8ii3quRWlSStLFUV0-vH_HXvwPyz_O2mAO8uAJQrTxaiTNqC12BsLK-QJtj_5f8GckCr0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807913150</pqid></control><display><type>article</type><title>Optimization of anastomotic technique and gastric conduit perfusion with hyperspectral imaging and machine learning in an experimental model for minimally invasive esophagectomy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nickel, F. ; Studier-Fischer, A. ; Özdemir, B. ; Odenthal, J. ; Müller, L.R. ; Knoedler, S. ; Kowalewski, K.F. ; Camplisson, I. ; Allers, M.M. ; Dietrich, M. ; Schmidt, K. ; Salg, G.A. ; Kenngott, H.G. ; Billeter, A.T. ; Gockel, I. ; Sagiv, C. ; Hadar, O.E. ; Gildenblat, J. ; Ayala, L. ; Seidlitz, S. ; Maier-Hein, L. ; Müller-Stich, B.P.</creator><creatorcontrib>Nickel, F. ; Studier-Fischer, A. ; Özdemir, B. ; Odenthal, J. ; Müller, L.R. ; Knoedler, S. ; Kowalewski, K.F. ; Camplisson, I. ; Allers, M.M. ; Dietrich, M. ; Schmidt, K. ; Salg, G.A. ; Kenngott, H.G. ; Billeter, A.T. ; Gockel, I. ; Sagiv, C. ; Hadar, O.E. ; Gildenblat, J. ; Ayala, L. ; Seidlitz, S. ; Maier-Hein, L. ; Müller-Stich, B.P.</creatorcontrib><description>Esophagectomy is the mainstay of esophageal cancer treatment, but anastomotic insufficiency related morbidity and mortality remain challenging for patient outcome. Therefore, the objective of this work was to optimize anastomotic technique and gastric conduit perfusion with hyperspectral imaging (HSI) for total minimally invasive esophagectomy (MIE) with linear stapled anastomosis. A live porcine model (n = 58) for MIE was used with gastric conduit formation and simulation of linear stapled side-to-side esophagogastrostomy. Four main experimental groups differed in stapling length (3 vs. 6 cm) and simulation of anastomotic position on the conduit (cranial vs. caudal). Tissue oxygenation around the anastomotic simulation site was evaluated using HSI and was validated with histopathology. The tissue oxygenation (ΔStO2) after the anastomotic simulation remained constant only for the short stapler in caudal position (−0.4 ± 4.4%, n.s.) while it was impaired markedly in the other groups (short-cranial: −15.6 ± 11.5%, p = 0.0002; long-cranial: −20.4 ± 7.6%, p = 0.0126; long-caudal: −16.1 ± 9.4%, p &lt; 0.0001). Tissue samples from avascular stomach as measured by HSI showed correspondent eosinophilic pre-necrotic changes in 35.7 ± 9.7% of the surface area. Tissue oxygenation at the site of anastomotic simulation of the gastric conduit during MIE is influenced by stapling technique. Optimal oxygenation was achieved with a short stapler (3 cm) and sufficient distance of the simulated anastomosis to the cranial end of the gastric conduit. HSI tissue deoxygenation corresponded to histopathologic necrotic tissue changes. The experimental model with HSI and ML allow for systematic optimization of gastric conduit perfusion and anastomotic technique while clinical translation will have to be proven.</description><identifier>ISSN: 0748-7983</identifier><identifier>ISSN: 1532-2157</identifier><identifier>EISSN: 1532-2157</identifier><identifier>DOI: 10.1016/j.ejso.2023.04.007</identifier><identifier>PMID: 37105869</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anastomosis, Surgical - methods ; Anastomotic Leak ; Animals ; Esophagectomy - methods ; Esophagus - pathology ; Esophagus - surgery ; Gastric conduit ; Gastrostomy - methods ; Hyperspectral imaging ; Hyperspectral Imaging - methods ; Linear stapled anastomosis ; Machine Learning ; Minimally invasive esophagectomy ; Minimally Invasive Surgical Procedures - methods ; Models, Animal ; Porcine model ; Simulation ; Stomach - surgery ; Surgical Stapling - methods ; Swine ; Tissue perfusion</subject><ispartof>European journal of surgical oncology, 2025-01, Vol.51 (1), p.106908, Article 106908</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-97d7366da61fe7dfc8f865d369cd1a729b6ddcade407bbdad3148526d00367c33</citedby><cites>FETCH-LOGICAL-c400t-97d7366da61fe7dfc8f865d369cd1a729b6ddcade407bbdad3148526d00367c33</cites><orcidid>0000-0003-2931-6247 ; 0000-0002-3964-3527 ; 0000-0003-3612-7401 ; 0000-0002-1291-2520 ; 0000-0002-3574-2085 ; 0000-0001-7423-713X ; 0000-0001-5312-9551 ; 0000-0003-4910-9368 ; 0000-0002-8552-8538 ; 0000-0001-8927-4830 ; 0000-0001-5798-8003 ; 0000-0001-9653-2789 ; 0000-0003-0960-038X ; 0000-0001-8373-9406 ; 0000-0001-6066-8238 ; 0000-0001-8682-9300 ; 0000-0001-8724-4793 ; 0000-0002-1122-4793 ; 0000-0003-1123-346X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0748798323004444$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37105869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nickel, F.</creatorcontrib><creatorcontrib>Studier-Fischer, A.</creatorcontrib><creatorcontrib>Özdemir, B.</creatorcontrib><creatorcontrib>Odenthal, J.</creatorcontrib><creatorcontrib>Müller, L.R.</creatorcontrib><creatorcontrib>Knoedler, S.</creatorcontrib><creatorcontrib>Kowalewski, K.F.</creatorcontrib><creatorcontrib>Camplisson, I.</creatorcontrib><creatorcontrib>Allers, M.M.</creatorcontrib><creatorcontrib>Dietrich, M.</creatorcontrib><creatorcontrib>Schmidt, K.</creatorcontrib><creatorcontrib>Salg, G.A.</creatorcontrib><creatorcontrib>Kenngott, H.G.</creatorcontrib><creatorcontrib>Billeter, A.T.</creatorcontrib><creatorcontrib>Gockel, I.</creatorcontrib><creatorcontrib>Sagiv, C.</creatorcontrib><creatorcontrib>Hadar, O.E.</creatorcontrib><creatorcontrib>Gildenblat, J.</creatorcontrib><creatorcontrib>Ayala, L.</creatorcontrib><creatorcontrib>Seidlitz, S.</creatorcontrib><creatorcontrib>Maier-Hein, L.</creatorcontrib><creatorcontrib>Müller-Stich, B.P.</creatorcontrib><title>Optimization of anastomotic technique and gastric conduit perfusion with hyperspectral imaging and machine learning in an experimental model for minimally invasive esophagectomy</title><title>European journal of surgical oncology</title><addtitle>Eur J Surg Oncol</addtitle><description>Esophagectomy is the mainstay of esophageal cancer treatment, but anastomotic insufficiency related morbidity and mortality remain challenging for patient outcome. Therefore, the objective of this work was to optimize anastomotic technique and gastric conduit perfusion with hyperspectral imaging (HSI) for total minimally invasive esophagectomy (MIE) with linear stapled anastomosis. A live porcine model (n = 58) for MIE was used with gastric conduit formation and simulation of linear stapled side-to-side esophagogastrostomy. Four main experimental groups differed in stapling length (3 vs. 6 cm) and simulation of anastomotic position on the conduit (cranial vs. caudal). Tissue oxygenation around the anastomotic simulation site was evaluated using HSI and was validated with histopathology. The tissue oxygenation (ΔStO2) after the anastomotic simulation remained constant only for the short stapler in caudal position (−0.4 ± 4.4%, n.s.) while it was impaired markedly in the other groups (short-cranial: −15.6 ± 11.5%, p = 0.0002; long-cranial: −20.4 ± 7.6%, p = 0.0126; long-caudal: −16.1 ± 9.4%, p &lt; 0.0001). Tissue samples from avascular stomach as measured by HSI showed correspondent eosinophilic pre-necrotic changes in 35.7 ± 9.7% of the surface area. Tissue oxygenation at the site of anastomotic simulation of the gastric conduit during MIE is influenced by stapling technique. Optimal oxygenation was achieved with a short stapler (3 cm) and sufficient distance of the simulated anastomosis to the cranial end of the gastric conduit. HSI tissue deoxygenation corresponded to histopathologic necrotic tissue changes. The experimental model with HSI and ML allow for systematic optimization of gastric conduit perfusion and anastomotic technique while clinical translation will have to be proven.</description><subject>Anastomosis, Surgical - methods</subject><subject>Anastomotic Leak</subject><subject>Animals</subject><subject>Esophagectomy - methods</subject><subject>Esophagus - pathology</subject><subject>Esophagus - surgery</subject><subject>Gastric conduit</subject><subject>Gastrostomy - methods</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral Imaging - methods</subject><subject>Linear stapled anastomosis</subject><subject>Machine Learning</subject><subject>Minimally invasive esophagectomy</subject><subject>Minimally Invasive Surgical Procedures - methods</subject><subject>Models, Animal</subject><subject>Porcine model</subject><subject>Simulation</subject><subject>Stomach - surgery</subject><subject>Surgical Stapling - methods</subject><subject>Swine</subject><subject>Tissue perfusion</subject><issn>0748-7983</issn><issn>1532-2157</issn><issn>1532-2157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGO1DAQRC0EYmcXfoAD8pFLgh0ndiJxQStgkVbaC5wtj92ZeBTbwXYGhr_iD3GYhSOnlqpfldRdCL2ipKaE8rfHGo4p1A1pWE3amhDxBO1ox5qqoZ14inZEtH0lhp5doeuUjoSQgYnhObpigpKu58MO_XpYsnX2p8o2eBxGrLxKObiQrcYZ9OTttxWKavChLGJRdfBmtRkvEMc1bbbvNk94OhchLaBzVDO2Th2sP_wxOqUn6wHPoKLfROuLjuFHMVgHPhfeBQMzHkPEzvpinudzwU4q2RNgSGGZ1KFEB3d-gZ6Nak7w8nHeoK8fP3y5vavuHz59vn1_X-mWkFwNwgjGuVGcjiDMqPux551hfNCGKtEMe26MVgZaIvZ7owyjbd813BDCuNCM3aA3l9wlhvKClKWzScM8Kw9hTbLpiRgoox0paHNBdQwpRRjlUg5T8SwpkVtV8ii3quRWlSStLFUV0-vH_HXvwPyz_O2mAO8uAJQrTxaiTNqC12BsLK-QJtj_5f8GckCr0Q</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Nickel, F.</creator><creator>Studier-Fischer, A.</creator><creator>Özdemir, B.</creator><creator>Odenthal, J.</creator><creator>Müller, L.R.</creator><creator>Knoedler, S.</creator><creator>Kowalewski, K.F.</creator><creator>Camplisson, I.</creator><creator>Allers, M.M.</creator><creator>Dietrich, M.</creator><creator>Schmidt, K.</creator><creator>Salg, G.A.</creator><creator>Kenngott, H.G.</creator><creator>Billeter, A.T.</creator><creator>Gockel, I.</creator><creator>Sagiv, C.</creator><creator>Hadar, O.E.</creator><creator>Gildenblat, J.</creator><creator>Ayala, L.</creator><creator>Seidlitz, S.</creator><creator>Maier-Hein, L.</creator><creator>Müller-Stich, B.P.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2931-6247</orcidid><orcidid>https://orcid.org/0000-0002-3964-3527</orcidid><orcidid>https://orcid.org/0000-0003-3612-7401</orcidid><orcidid>https://orcid.org/0000-0002-1291-2520</orcidid><orcidid>https://orcid.org/0000-0002-3574-2085</orcidid><orcidid>https://orcid.org/0000-0001-7423-713X</orcidid><orcidid>https://orcid.org/0000-0001-5312-9551</orcidid><orcidid>https://orcid.org/0000-0003-4910-9368</orcidid><orcidid>https://orcid.org/0000-0002-8552-8538</orcidid><orcidid>https://orcid.org/0000-0001-8927-4830</orcidid><orcidid>https://orcid.org/0000-0001-5798-8003</orcidid><orcidid>https://orcid.org/0000-0001-9653-2789</orcidid><orcidid>https://orcid.org/0000-0003-0960-038X</orcidid><orcidid>https://orcid.org/0000-0001-8373-9406</orcidid><orcidid>https://orcid.org/0000-0001-6066-8238</orcidid><orcidid>https://orcid.org/0000-0001-8682-9300</orcidid><orcidid>https://orcid.org/0000-0001-8724-4793</orcidid><orcidid>https://orcid.org/0000-0002-1122-4793</orcidid><orcidid>https://orcid.org/0000-0003-1123-346X</orcidid></search><sort><creationdate>20250101</creationdate><title>Optimization of anastomotic technique and gastric conduit perfusion with hyperspectral imaging and machine learning in an experimental model for minimally invasive esophagectomy</title><author>Nickel, F. ; Studier-Fischer, A. ; Özdemir, B. ; Odenthal, J. ; Müller, L.R. ; Knoedler, S. ; Kowalewski, K.F. ; Camplisson, I. ; Allers, M.M. ; Dietrich, M. ; Schmidt, K. ; Salg, G.A. ; Kenngott, H.G. ; Billeter, A.T. ; Gockel, I. ; Sagiv, C. ; Hadar, O.E. ; Gildenblat, J. ; Ayala, L. ; Seidlitz, S. ; Maier-Hein, L. ; Müller-Stich, B.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-97d7366da61fe7dfc8f865d369cd1a729b6ddcade407bbdad3148526d00367c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Anastomosis, Surgical - methods</topic><topic>Anastomotic Leak</topic><topic>Animals</topic><topic>Esophagectomy - methods</topic><topic>Esophagus - pathology</topic><topic>Esophagus - surgery</topic><topic>Gastric conduit</topic><topic>Gastrostomy - methods</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral Imaging - methods</topic><topic>Linear stapled anastomosis</topic><topic>Machine Learning</topic><topic>Minimally invasive esophagectomy</topic><topic>Minimally Invasive Surgical Procedures - methods</topic><topic>Models, Animal</topic><topic>Porcine model</topic><topic>Simulation</topic><topic>Stomach - surgery</topic><topic>Surgical Stapling - methods</topic><topic>Swine</topic><topic>Tissue perfusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nickel, F.</creatorcontrib><creatorcontrib>Studier-Fischer, A.</creatorcontrib><creatorcontrib>Özdemir, B.</creatorcontrib><creatorcontrib>Odenthal, J.</creatorcontrib><creatorcontrib>Müller, L.R.</creatorcontrib><creatorcontrib>Knoedler, S.</creatorcontrib><creatorcontrib>Kowalewski, K.F.</creatorcontrib><creatorcontrib>Camplisson, I.</creatorcontrib><creatorcontrib>Allers, M.M.</creatorcontrib><creatorcontrib>Dietrich, M.</creatorcontrib><creatorcontrib>Schmidt, K.</creatorcontrib><creatorcontrib>Salg, G.A.</creatorcontrib><creatorcontrib>Kenngott, H.G.</creatorcontrib><creatorcontrib>Billeter, A.T.</creatorcontrib><creatorcontrib>Gockel, I.</creatorcontrib><creatorcontrib>Sagiv, C.</creatorcontrib><creatorcontrib>Hadar, O.E.</creatorcontrib><creatorcontrib>Gildenblat, J.</creatorcontrib><creatorcontrib>Ayala, L.</creatorcontrib><creatorcontrib>Seidlitz, S.</creatorcontrib><creatorcontrib>Maier-Hein, L.</creatorcontrib><creatorcontrib>Müller-Stich, B.P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of surgical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nickel, F.</au><au>Studier-Fischer, A.</au><au>Özdemir, B.</au><au>Odenthal, J.</au><au>Müller, L.R.</au><au>Knoedler, S.</au><au>Kowalewski, K.F.</au><au>Camplisson, I.</au><au>Allers, M.M.</au><au>Dietrich, M.</au><au>Schmidt, K.</au><au>Salg, G.A.</au><au>Kenngott, H.G.</au><au>Billeter, A.T.</au><au>Gockel, I.</au><au>Sagiv, C.</au><au>Hadar, O.E.</au><au>Gildenblat, J.</au><au>Ayala, L.</au><au>Seidlitz, S.</au><au>Maier-Hein, L.</au><au>Müller-Stich, B.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of anastomotic technique and gastric conduit perfusion with hyperspectral imaging and machine learning in an experimental model for minimally invasive esophagectomy</atitle><jtitle>European journal of surgical oncology</jtitle><addtitle>Eur J Surg Oncol</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>51</volume><issue>1</issue><spage>106908</spage><pages>106908-</pages><artnum>106908</artnum><issn>0748-7983</issn><issn>1532-2157</issn><eissn>1532-2157</eissn><abstract>Esophagectomy is the mainstay of esophageal cancer treatment, but anastomotic insufficiency related morbidity and mortality remain challenging for patient outcome. Therefore, the objective of this work was to optimize anastomotic technique and gastric conduit perfusion with hyperspectral imaging (HSI) for total minimally invasive esophagectomy (MIE) with linear stapled anastomosis. A live porcine model (n = 58) for MIE was used with gastric conduit formation and simulation of linear stapled side-to-side esophagogastrostomy. Four main experimental groups differed in stapling length (3 vs. 6 cm) and simulation of anastomotic position on the conduit (cranial vs. caudal). Tissue oxygenation around the anastomotic simulation site was evaluated using HSI and was validated with histopathology. The tissue oxygenation (ΔStO2) after the anastomotic simulation remained constant only for the short stapler in caudal position (−0.4 ± 4.4%, n.s.) while it was impaired markedly in the other groups (short-cranial: −15.6 ± 11.5%, p = 0.0002; long-cranial: −20.4 ± 7.6%, p = 0.0126; long-caudal: −16.1 ± 9.4%, p &lt; 0.0001). Tissue samples from avascular stomach as measured by HSI showed correspondent eosinophilic pre-necrotic changes in 35.7 ± 9.7% of the surface area. Tissue oxygenation at the site of anastomotic simulation of the gastric conduit during MIE is influenced by stapling technique. Optimal oxygenation was achieved with a short stapler (3 cm) and sufficient distance of the simulated anastomosis to the cranial end of the gastric conduit. HSI tissue deoxygenation corresponded to histopathologic necrotic tissue changes. The experimental model with HSI and ML allow for systematic optimization of gastric conduit perfusion and anastomotic technique while clinical translation will have to be proven.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37105869</pmid><doi>10.1016/j.ejso.2023.04.007</doi><orcidid>https://orcid.org/0000-0003-2931-6247</orcidid><orcidid>https://orcid.org/0000-0002-3964-3527</orcidid><orcidid>https://orcid.org/0000-0003-3612-7401</orcidid><orcidid>https://orcid.org/0000-0002-1291-2520</orcidid><orcidid>https://orcid.org/0000-0002-3574-2085</orcidid><orcidid>https://orcid.org/0000-0001-7423-713X</orcidid><orcidid>https://orcid.org/0000-0001-5312-9551</orcidid><orcidid>https://orcid.org/0000-0003-4910-9368</orcidid><orcidid>https://orcid.org/0000-0002-8552-8538</orcidid><orcidid>https://orcid.org/0000-0001-8927-4830</orcidid><orcidid>https://orcid.org/0000-0001-5798-8003</orcidid><orcidid>https://orcid.org/0000-0001-9653-2789</orcidid><orcidid>https://orcid.org/0000-0003-0960-038X</orcidid><orcidid>https://orcid.org/0000-0001-8373-9406</orcidid><orcidid>https://orcid.org/0000-0001-6066-8238</orcidid><orcidid>https://orcid.org/0000-0001-8682-9300</orcidid><orcidid>https://orcid.org/0000-0001-8724-4793</orcidid><orcidid>https://orcid.org/0000-0002-1122-4793</orcidid><orcidid>https://orcid.org/0000-0003-1123-346X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0748-7983
ispartof European journal of surgical oncology, 2025-01, Vol.51 (1), p.106908, Article 106908
issn 0748-7983
1532-2157
1532-2157
language eng
recordid cdi_proquest_miscellaneous_2807913150
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anastomosis, Surgical - methods
Anastomotic Leak
Animals
Esophagectomy - methods
Esophagus - pathology
Esophagus - surgery
Gastric conduit
Gastrostomy - methods
Hyperspectral imaging
Hyperspectral Imaging - methods
Linear stapled anastomosis
Machine Learning
Minimally invasive esophagectomy
Minimally Invasive Surgical Procedures - methods
Models, Animal
Porcine model
Simulation
Stomach - surgery
Surgical Stapling - methods
Swine
Tissue perfusion
title Optimization of anastomotic technique and gastric conduit perfusion with hyperspectral imaging and machine learning in an experimental model for minimally invasive esophagectomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20anastomotic%20technique%20and%20gastric%20conduit%20perfusion%20with%20hyperspectral%20imaging%20and%20machine%20learning%20in%20an%20experimental%20model%20for%20minimally%20invasive%20esophagectomy&rft.jtitle=European%20journal%20of%20surgical%20oncology&rft.au=Nickel,%20F.&rft.date=2025-01-01&rft.volume=51&rft.issue=1&rft.spage=106908&rft.pages=106908-&rft.artnum=106908&rft.issn=0748-7983&rft.eissn=1532-2157&rft_id=info:doi/10.1016/j.ejso.2023.04.007&rft_dat=%3Cproquest_cross%3E2807913150%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807913150&rft_id=info:pmid/37105869&rft_els_id=S0748798323004444&rfr_iscdi=true