A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties

A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polyno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & structures 2003-03, Vol.81 (6), p.349-357
1. Verfasser: Bartels, Robert E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 357
container_issue 6
container_start_page 349
container_title Computers & structures
container_volume 81
creator Bartels, Robert E.
description A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.
doi_str_mv 10.1016/S0045-7949(03)00018-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28073978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579490300018X</els_id><sourcerecordid>28073978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c4278d1b6c7594add9f2dbd7384f0c9cd35465f2a968cb579123e7095f1f44cd3</originalsourceid><addsrcrecordid>eNqFkEFLHTEUhUNpoa_af1AhK2kX095MkslkVURaLQguVHAX8pI7z8hM5pnkWYt_vvFN6VYIXMj5zrncQ8gRg68MWPftCkDIRmmhPwP_AgCsb27fkBXrlW7aVvC3ZPUfeU8-5HxfoU4ArMjzCS1hQhpiwU2yJcyR2nEzp1DuJrq2GT2tX-UOaS62IC3Jxhz23GRLCk90mFPV0s6VXcJMf1fnkvlo058QN9RGT-McxxDRJrpN8xZTCZgPybvBjhk__psH5Obnj-vT8-bi8uzX6clF47jUpXGiVb1n684pqYX1Xg-tX3vFezGA085zKTo5tFZ3vVtLpVnLUYGWAxuEqPIBOV5y6-qHHeZippAdjqONOO-yaXtQXKu-gnIBXZpzTjiYbQpTvcIwMC9Vm33V5qVHA9zsqza31fdp8UWbrYkl1UwAXh_jEqr8fZGxHvkYMJnsAkaHPiR0xfg5vLLgL0eskcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28073978</pqid></control><display><type>article</type><title>A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties</title><source>Access via ScienceDirect (Elsevier)</source><source>NASA Technical Reports Server</source><creator>Bartels, Robert E.</creator><creatorcontrib>Bartels, Robert E.</creatorcontrib><description>A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/S0045-7949(03)00018-X</identifier><language>eng</language><publisher>Langley Research Center: Elsevier Ltd</publisher><subject>Chaos ; Computational algorithm ; Linear ; Nonlinear ; Numerical Analysis ; State transition matrix ; Structural dynamics ; Time variant</subject><ispartof>Computers &amp; structures, 2003-03, Vol.81 (6), p.349-357</ispartof><rights>2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c4278d1b6c7594add9f2dbd7384f0c9cd35465f2a968cb579123e7095f1f44cd3</citedby><cites>FETCH-LOGICAL-c359t-c4278d1b6c7594add9f2dbd7384f0c9cd35465f2a968cb579123e7095f1f44cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0045-7949(03)00018-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bartels, Robert E.</creatorcontrib><title>A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties</title><title>Computers &amp; structures</title><description>A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.</description><subject>Chaos</subject><subject>Computational algorithm</subject><subject>Linear</subject><subject>Nonlinear</subject><subject>Numerical Analysis</subject><subject>State transition matrix</subject><subject>Structural dynamics</subject><subject>Time variant</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNqFkEFLHTEUhUNpoa_af1AhK2kX095MkslkVURaLQguVHAX8pI7z8hM5pnkWYt_vvFN6VYIXMj5zrncQ8gRg68MWPftCkDIRmmhPwP_AgCsb27fkBXrlW7aVvC3ZPUfeU8-5HxfoU4ArMjzCS1hQhpiwU2yJcyR2nEzp1DuJrq2GT2tX-UOaS62IC3Jxhz23GRLCk90mFPV0s6VXcJMf1fnkvlo058QN9RGT-McxxDRJrpN8xZTCZgPybvBjhk__psH5Obnj-vT8-bi8uzX6clF47jUpXGiVb1n684pqYX1Xg-tX3vFezGA085zKTo5tFZ3vVtLpVnLUYGWAxuEqPIBOV5y6-qHHeZippAdjqONOO-yaXtQXKu-gnIBXZpzTjiYbQpTvcIwMC9Vm33V5qVHA9zsqza31fdp8UWbrYkl1UwAXh_jEqr8fZGxHvkYMJnsAkaHPiR0xfg5vLLgL0eskcg</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Bartels, Robert E.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030301</creationdate><title>A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties</title><author>Bartels, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c4278d1b6c7594add9f2dbd7384f0c9cd35465f2a968cb579123e7095f1f44cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Chaos</topic><topic>Computational algorithm</topic><topic>Linear</topic><topic>Nonlinear</topic><topic>Numerical Analysis</topic><topic>State transition matrix</topic><topic>Structural dynamics</topic><topic>Time variant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartels, Robert E.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartels, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties</atitle><jtitle>Computers &amp; structures</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>81</volume><issue>6</issue><spage>349</spage><epage>357</epage><pages>349-357</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.</abstract><cop>Langley Research Center</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0045-7949(03)00018-X</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2003-03, Vol.81 (6), p.349-357
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_28073978
source Access via ScienceDirect (Elsevier); NASA Technical Reports Server
subjects Chaos
Computational algorithm
Linear
Nonlinear
Numerical Analysis
State transition matrix
Structural dynamics
Time variant
title A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time%20integration%20algorithm%20based%20on%20the%20state%20transition%20matrix%20for%20structures%20with%20time%20varying%20and%20nonlinear%20properties&rft.jtitle=Computers%20&%20structures&rft.au=Bartels,%20Robert%20E.&rft.date=2003-03-01&rft.volume=81&rft.issue=6&rft.spage=349&rft.epage=357&rft.pages=349-357&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/S0045-7949(03)00018-X&rft_dat=%3Cproquest_cross%3E28073978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28073978&rft_id=info:pmid/&rft_els_id=S004579490300018X&rfr_iscdi=true