A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties
A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polyno...
Gespeichert in:
Veröffentlicht in: | Computers & structures 2003-03, Vol.81 (6), p.349-357 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 6 |
container_start_page | 349 |
container_title | Computers & structures |
container_volume | 81 |
creator | Bartels, Robert E. |
description | A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods. |
doi_str_mv | 10.1016/S0045-7949(03)00018-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28073978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579490300018X</els_id><sourcerecordid>28073978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c4278d1b6c7594add9f2dbd7384f0c9cd35465f2a968cb579123e7095f1f44cd3</originalsourceid><addsrcrecordid>eNqFkEFLHTEUhUNpoa_af1AhK2kX095MkslkVURaLQguVHAX8pI7z8hM5pnkWYt_vvFN6VYIXMj5zrncQ8gRg68MWPftCkDIRmmhPwP_AgCsb27fkBXrlW7aVvC3ZPUfeU8-5HxfoU4ArMjzCS1hQhpiwU2yJcyR2nEzp1DuJrq2GT2tX-UOaS62IC3Jxhz23GRLCk90mFPV0s6VXcJMf1fnkvlo058QN9RGT-McxxDRJrpN8xZTCZgPybvBjhk__psH5Obnj-vT8-bi8uzX6clF47jUpXGiVb1n684pqYX1Xg-tX3vFezGA085zKTo5tFZ3vVtLpVnLUYGWAxuEqPIBOV5y6-qHHeZippAdjqONOO-yaXtQXKu-gnIBXZpzTjiYbQpTvcIwMC9Vm33V5qVHA9zsqza31fdp8UWbrYkl1UwAXh_jEqr8fZGxHvkYMJnsAkaHPiR0xfg5vLLgL0eskcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28073978</pqid></control><display><type>article</type><title>A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties</title><source>Access via ScienceDirect (Elsevier)</source><source>NASA Technical Reports Server</source><creator>Bartels, Robert E.</creator><creatorcontrib>Bartels, Robert E.</creatorcontrib><description>A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/S0045-7949(03)00018-X</identifier><language>eng</language><publisher>Langley Research Center: Elsevier Ltd</publisher><subject>Chaos ; Computational algorithm ; Linear ; Nonlinear ; Numerical Analysis ; State transition matrix ; Structural dynamics ; Time variant</subject><ispartof>Computers & structures, 2003-03, Vol.81 (6), p.349-357</ispartof><rights>2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c4278d1b6c7594add9f2dbd7384f0c9cd35465f2a968cb579123e7095f1f44cd3</citedby><cites>FETCH-LOGICAL-c359t-c4278d1b6c7594add9f2dbd7384f0c9cd35465f2a968cb579123e7095f1f44cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0045-7949(03)00018-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bartels, Robert E.</creatorcontrib><title>A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties</title><title>Computers & structures</title><description>A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.</description><subject>Chaos</subject><subject>Computational algorithm</subject><subject>Linear</subject><subject>Nonlinear</subject><subject>Numerical Analysis</subject><subject>State transition matrix</subject><subject>Structural dynamics</subject><subject>Time variant</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNqFkEFLHTEUhUNpoa_af1AhK2kX095MkslkVURaLQguVHAX8pI7z8hM5pnkWYt_vvFN6VYIXMj5zrncQ8gRg68MWPftCkDIRmmhPwP_AgCsb27fkBXrlW7aVvC3ZPUfeU8-5HxfoU4ArMjzCS1hQhpiwU2yJcyR2nEzp1DuJrq2GT2tX-UOaS62IC3Jxhz23GRLCk90mFPV0s6VXcJMf1fnkvlo058QN9RGT-McxxDRJrpN8xZTCZgPybvBjhk__psH5Obnj-vT8-bi8uzX6clF47jUpXGiVb1n684pqYX1Xg-tX3vFezGA085zKTo5tFZ3vVtLpVnLUYGWAxuEqPIBOV5y6-qHHeZippAdjqONOO-yaXtQXKu-gnIBXZpzTjiYbQpTvcIwMC9Vm33V5qVHA9zsqza31fdp8UWbrYkl1UwAXh_jEqr8fZGxHvkYMJnsAkaHPiR0xfg5vLLgL0eskcg</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Bartels, Robert E.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030301</creationdate><title>A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties</title><author>Bartels, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c4278d1b6c7594add9f2dbd7384f0c9cd35465f2a968cb579123e7095f1f44cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Chaos</topic><topic>Computational algorithm</topic><topic>Linear</topic><topic>Nonlinear</topic><topic>Numerical Analysis</topic><topic>State transition matrix</topic><topic>Structural dynamics</topic><topic>Time variant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartels, Robert E.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartels, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties</atitle><jtitle>Computers & structures</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>81</volume><issue>6</issue><spage>349</spage><epage>357</epage><pages>349-357</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.</abstract><cop>Langley Research Center</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0045-7949(03)00018-X</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2003-03, Vol.81 (6), p.349-357 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_proquest_miscellaneous_28073978 |
source | Access via ScienceDirect (Elsevier); NASA Technical Reports Server |
subjects | Chaos Computational algorithm Linear Nonlinear Numerical Analysis State transition matrix Structural dynamics Time variant |
title | A time integration algorithm based on the state transition matrix for structures with time varying and nonlinear properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time%20integration%20algorithm%20based%20on%20the%20state%20transition%20matrix%20for%20structures%20with%20time%20varying%20and%20nonlinear%20properties&rft.jtitle=Computers%20&%20structures&rft.au=Bartels,%20Robert%20E.&rft.date=2003-03-01&rft.volume=81&rft.issue=6&rft.spage=349&rft.epage=357&rft.pages=349-357&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/S0045-7949(03)00018-X&rft_dat=%3Cproquest_cross%3E28073978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28073978&rft_id=info:pmid/&rft_els_id=S004579490300018X&rfr_iscdi=true |