Robot steering with spectral image information

We introduce a method for rapidly classifying visual scenes globally along a small number of navigationally relevant dimensions: depth of scene, presence of obstacles, path versus nonpath, and orientation of path. We show that the algorithm reliably classifies scenes in terms of these high-level fea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2005-04, Vol.21 (2), p.247-251
Hauptverfasser: Ackerman, C., Itti, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a method for rapidly classifying visual scenes globally along a small number of navigationally relevant dimensions: depth of scene, presence of obstacles, path versus nonpath, and orientation of path. We show that the algorithm reliably classifies scenes in terms of these high-level features, based on global or coarsely localized spectral analysis analogous to early-stage biological vision. We use this analysis to implement a real-time visual navigational system on a mobile robot, trained online by a human operator. We demonstrate successful training and subsequent autonomous path following for two different outdoor environments, a running track and a concrete trail. Our success with this technique suggests a general applicability to autonomous robot navigation in a variety of environments.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2004.837241