Evaporation Heat Transfer in Sintered Porous Media

A two-dimensional model is presented to predict the overall heat transfer capability for a sintered wick structure. The model considers the absence of bulk fluid at the top surface of the wick, heat conduction resistance through the wick, capillary limitation, and the onset of nucleate boiling. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2003-08, Vol.125 (4), p.644-652
Hauptverfasser: Hanlon, M. A, Ma, H. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 4
container_start_page 644
container_title Journal of heat transfer
container_volume 125
creator Hanlon, M. A
Ma, H. B
description A two-dimensional model is presented to predict the overall heat transfer capability for a sintered wick structure. The model considers the absence of bulk fluid at the top surface of the wick, heat conduction resistance through the wick, capillary limitation, and the onset of nucleate boiling. The numerical results show that thin film evaporation occurring only at the top surface of a wick plays an important role in the enhancement of evaporating heat transfer and depends on the thin film evaporation, the particle size, the porosity, and the wick structure thickness. By decreasing the average particle radius, the evaporation heat transfer coefficient can be enhanced. Additionally, there exists an optimum characteristic thickness for maximum heat removal. The maximum superheat allowable for thin film evaporation at the top surface of a wick is presented to be a function of the particle radius, wick porosity, wick structure thickness, and effective thermal conductivity. In order to verify the theoretical analysis, an experimental system was established, and a comparison with the theoretical prediction conducted. Results of the investigation will assist in optimizing the heat transfer performance of sintered porous media in heat pipes and better understanding of thin film evaporation.
doi_str_mv 10.1115/1.1560145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28067142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28067142</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-f13550962e41f666e2a2f5a7925b2de391a8af720a76a59eda8c939b108910693</originalsourceid><addsrcrecordid>eNpFkM1Lw0AUxBdRsFYPnr3kouAhdd9-ZfcopVqhomA9L6_JW0hJk7qbCP73RlrwNJffDDPD2DXwGQDoB5iBNhyUPmET0MLm1il5yiacC5GDsnDOLlLacg5SKjdhYvGN-y5iX3dttiTss3XENgWKWd1mH3XbU6Qqe-9iN6TslaoaL9lZwCbR1VGn7PNpsZ4v89Xb88v8cZWjAujzAFJr7owgBcEYQwJF0Fg4oTeiIukALYZCcCwMakcV2tJJtwFuHXDj5JTdHXL3sfsaKPV-V6eSmgZbGst4YbkpQIkRvD-AZexSihT8PtY7jD8euP97xYM_vjKyt8dQTCU2YRxb1unfoLmSYIqRuzlwmHbkt90Q23GrV4XVWstfd9xnkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28067142</pqid></control><display><type>article</type><title>Evaporation Heat Transfer in Sintered Porous Media</title><source>ASME Transactions Journals (Current)</source><creator>Hanlon, M. A ; Ma, H. B</creator><creatorcontrib>Hanlon, M. A ; Ma, H. B</creatorcontrib><description>A two-dimensional model is presented to predict the overall heat transfer capability for a sintered wick structure. The model considers the absence of bulk fluid at the top surface of the wick, heat conduction resistance through the wick, capillary limitation, and the onset of nucleate boiling. The numerical results show that thin film evaporation occurring only at the top surface of a wick plays an important role in the enhancement of evaporating heat transfer and depends on the thin film evaporation, the particle size, the porosity, and the wick structure thickness. By decreasing the average particle radius, the evaporation heat transfer coefficient can be enhanced. Additionally, there exists an optimum characteristic thickness for maximum heat removal. The maximum superheat allowable for thin film evaporation at the top surface of a wick is presented to be a function of the particle radius, wick porosity, wick structure thickness, and effective thermal conductivity. In order to verify the theoretical analysis, an experimental system was established, and a comparison with the theoretical prediction conducted. Results of the investigation will assist in optimizing the heat transfer performance of sintered porous media in heat pipes and better understanding of thin film evaporation.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.1560145</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Testing, measurement, noise and reliability</subject><ispartof>Journal of heat transfer, 2003-08, Vol.125 (4), p.644-652</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-f13550962e41f666e2a2f5a7925b2de391a8af720a76a59eda8c939b108910693</citedby><cites>FETCH-LOGICAL-a411t-f13550962e41f666e2a2f5a7925b2de391a8af720a76a59eda8c939b108910693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15043167$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanlon, M. A</creatorcontrib><creatorcontrib>Ma, H. B</creatorcontrib><title>Evaporation Heat Transfer in Sintered Porous Media</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>A two-dimensional model is presented to predict the overall heat transfer capability for a sintered wick structure. The model considers the absence of bulk fluid at the top surface of the wick, heat conduction resistance through the wick, capillary limitation, and the onset of nucleate boiling. The numerical results show that thin film evaporation occurring only at the top surface of a wick plays an important role in the enhancement of evaporating heat transfer and depends on the thin film evaporation, the particle size, the porosity, and the wick structure thickness. By decreasing the average particle radius, the evaporation heat transfer coefficient can be enhanced. Additionally, there exists an optimum characteristic thickness for maximum heat removal. The maximum superheat allowable for thin film evaporation at the top surface of a wick is presented to be a function of the particle radius, wick porosity, wick structure thickness, and effective thermal conductivity. In order to verify the theoretical analysis, an experimental system was established, and a comparison with the theoretical prediction conducted. Results of the investigation will assist in optimizing the heat transfer performance of sintered porous media in heat pipes and better understanding of thin film evaporation.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Testing, measurement, noise and reliability</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkM1Lw0AUxBdRsFYPnr3kouAhdd9-ZfcopVqhomA9L6_JW0hJk7qbCP73RlrwNJffDDPD2DXwGQDoB5iBNhyUPmET0MLm1il5yiacC5GDsnDOLlLacg5SKjdhYvGN-y5iX3dttiTss3XENgWKWd1mH3XbU6Qqe-9iN6TslaoaL9lZwCbR1VGn7PNpsZ4v89Xb88v8cZWjAujzAFJr7owgBcEYQwJF0Fg4oTeiIukALYZCcCwMakcV2tJJtwFuHXDj5JTdHXL3sfsaKPV-V6eSmgZbGst4YbkpQIkRvD-AZexSihT8PtY7jD8euP97xYM_vjKyt8dQTCU2YRxb1unfoLmSYIqRuzlwmHbkt90Q23GrV4XVWstfd9xnkg</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Hanlon, M. A</creator><creator>Ma, H. B</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20030801</creationdate><title>Evaporation Heat Transfer in Sintered Porous Media</title><author>Hanlon, M. A ; Ma, H. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-f13550962e41f666e2a2f5a7925b2de391a8af720a76a59eda8c939b108910693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Testing, measurement, noise and reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanlon, M. A</creatorcontrib><creatorcontrib>Ma, H. B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanlon, M. A</au><au>Ma, H. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation Heat Transfer in Sintered Porous Media</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2003-08-01</date><risdate>2003</risdate><volume>125</volume><issue>4</issue><spage>644</spage><epage>652</epage><pages>644-652</pages><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>A two-dimensional model is presented to predict the overall heat transfer capability for a sintered wick structure. The model considers the absence of bulk fluid at the top surface of the wick, heat conduction resistance through the wick, capillary limitation, and the onset of nucleate boiling. The numerical results show that thin film evaporation occurring only at the top surface of a wick plays an important role in the enhancement of evaporating heat transfer and depends on the thin film evaporation, the particle size, the porosity, and the wick structure thickness. By decreasing the average particle radius, the evaporation heat transfer coefficient can be enhanced. Additionally, there exists an optimum characteristic thickness for maximum heat removal. The maximum superheat allowable for thin film evaporation at the top surface of a wick is presented to be a function of the particle radius, wick porosity, wick structure thickness, and effective thermal conductivity. In order to verify the theoretical analysis, an experimental system was established, and a comparison with the theoretical prediction conducted. Results of the investigation will assist in optimizing the heat transfer performance of sintered porous media in heat pipes and better understanding of thin film evaporation.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.1560145</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1481
ispartof Journal of heat transfer, 2003-08, Vol.125 (4), p.644-652
issn 0022-1481
1528-8943
language eng
recordid cdi_proquest_miscellaneous_28067142
source ASME Transactions Journals (Current)
subjects Applied sciences
Electronics
Exact sciences and technology
Testing, measurement, noise and reliability
title Evaporation Heat Transfer in Sintered Porous Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation%20Heat%20Transfer%20in%20Sintered%20Porous%20Media&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Hanlon,%20M.%20A&rft.date=2003-08-01&rft.volume=125&rft.issue=4&rft.spage=644&rft.epage=652&rft.pages=644-652&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.1560145&rft_dat=%3Cproquest_cross%3E28067142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28067142&rft_id=info:pmid/&rfr_iscdi=true