Thermal shock resistance and thermal-mechanical processing of sapphire

The finite elements method was applied to calculate transient thermal stresses in sapphire with taking into account the crystal's anisotropy, scale factor, temperature function of heat transfer and other properties. The sapphire fracture behaviour as compared to ceramic polycrystalline material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Ceramic Society 2003-03, Vol.23 (3), p.455-468
Hauptverfasser: Lanin, A.G., Muravin, E.L., Popov, V.P., Turchin, V.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 3
container_start_page 455
container_title Journal of the European Ceramic Society
container_volume 23
creator Lanin, A.G.
Muravin, E.L.
Popov, V.P.
Turchin, V.N.
description The finite elements method was applied to calculate transient thermal stresses in sapphire with taking into account the crystal's anisotropy, scale factor, temperature function of heat transfer and other properties. The sapphire fracture behaviour as compared to ceramic polycrystalline materials under heat load, differs due to two factors: (a) twinning type strain at rather low test temperatures
doi_str_mv 10.1016/S0955-2219(02)00093-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28061323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955221902000936</els_id><sourcerecordid>28045611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-ea1c8a243e50b70fe80391f284fb88e920c844d511a3ffab1ad1326ca4c1f0f13</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKs_QdiT6GF1JvvR7EmkWBUKHqzgLaTZiRvdL5Ot4L837YpXPWUgz_sy8zB2inCJgPnVExRZFnOOxTnwCwAokjjfYxMUszBg8bLPJr_IITvy_g0AZ1AUE7ZYVeQaVUe-6vR75MhbP6hWU6TaMhrGz7ghXanW6sD1rtPkvW1fo85EXvV9ZR0dswOjak8nP--UPS9uV_P7ePl49zC_WcY6TbIhJoVaKJ4mlMF6BoYEJAUaLlKzFoIKDlqkaZkhqsQYtUZVYsJzrVKNBgwmU3Y29oY1PjbkB9lYr6muVUvdxksuIA-J5D9gmuW4bcxGULvOe0dG9s42yn1JBLnVK3d65dadBC53emUectdjjsK5n5ac9NpSEFcGHXqQZWf_aPgGNQqCNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28045611</pqid></control><display><type>article</type><title>Thermal shock resistance and thermal-mechanical processing of sapphire</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lanin, A.G. ; Muravin, E.L. ; Popov, V.P. ; Turchin, V.N.</creator><contributor>WCA</contributor><creatorcontrib>Lanin, A.G. ; Muravin, E.L. ; Popov, V.P. ; Turchin, V.N. ; WCA</creatorcontrib><description>The finite elements method was applied to calculate transient thermal stresses in sapphire with taking into account the crystal's anisotropy, scale factor, temperature function of heat transfer and other properties. The sapphire fracture behaviour as compared to ceramic polycrystalline materials under heat load, differs due to two factors: (a) twinning type strain at rather low test temperatures &lt;200  °C and (b) fracture toughness anisotropy. The cracking behaviour and thermal shock resistance (TSR) of the crystal against its dimensions, orientation and the heat load type was explained using the force fracture mechanics and the twinning and cracking features in the tensile and compressive stress fields. The influence of residual stresses after stress relaxation was studied. A possibility to increase the strength by 2–3 times and TSR of sapphire using a thermomechanical process was shown. This enables thermal stress generation under high-rate heatup to 1500–2000 °C, thus lowering the stress concentration on defects through local stress relaxation.</description><identifier>ISSN: 0955-2219</identifier><identifier>EISSN: 1873-619X</identifier><identifier>DOI: 10.1016/S0955-2219(02)00093-6</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Al 2O 3 ; Fracture ; Heat treatment ; Modelling ; Sapphire ; Thermal shock resistance</subject><ispartof>Journal of the European Ceramic Society, 2003-03, Vol.23 (3), p.455-468</ispartof><rights>2002 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-ea1c8a243e50b70fe80391f284fb88e920c844d511a3ffab1ad1326ca4c1f0f13</citedby><cites>FETCH-LOGICAL-c435t-ea1c8a243e50b70fe80391f284fb88e920c844d511a3ffab1ad1326ca4c1f0f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0955-2219(02)00093-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><contributor>WCA</contributor><creatorcontrib>Lanin, A.G.</creatorcontrib><creatorcontrib>Muravin, E.L.</creatorcontrib><creatorcontrib>Popov, V.P.</creatorcontrib><creatorcontrib>Turchin, V.N.</creatorcontrib><title>Thermal shock resistance and thermal-mechanical processing of sapphire</title><title>Journal of the European Ceramic Society</title><description>The finite elements method was applied to calculate transient thermal stresses in sapphire with taking into account the crystal's anisotropy, scale factor, temperature function of heat transfer and other properties. The sapphire fracture behaviour as compared to ceramic polycrystalline materials under heat load, differs due to two factors: (a) twinning type strain at rather low test temperatures &lt;200  °C and (b) fracture toughness anisotropy. The cracking behaviour and thermal shock resistance (TSR) of the crystal against its dimensions, orientation and the heat load type was explained using the force fracture mechanics and the twinning and cracking features in the tensile and compressive stress fields. The influence of residual stresses after stress relaxation was studied. A possibility to increase the strength by 2–3 times and TSR of sapphire using a thermomechanical process was shown. This enables thermal stress generation under high-rate heatup to 1500–2000 °C, thus lowering the stress concentration on defects through local stress relaxation.</description><subject>Al 2O 3</subject><subject>Fracture</subject><subject>Heat treatment</subject><subject>Modelling</subject><subject>Sapphire</subject><subject>Thermal shock resistance</subject><issn>0955-2219</issn><issn>1873-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKs_QdiT6GF1JvvR7EmkWBUKHqzgLaTZiRvdL5Ot4L837YpXPWUgz_sy8zB2inCJgPnVExRZFnOOxTnwCwAokjjfYxMUszBg8bLPJr_IITvy_g0AZ1AUE7ZYVeQaVUe-6vR75MhbP6hWU6TaMhrGz7ghXanW6sD1rtPkvW1fo85EXvV9ZR0dswOjak8nP--UPS9uV_P7ePl49zC_WcY6TbIhJoVaKJ4mlMF6BoYEJAUaLlKzFoIKDlqkaZkhqsQYtUZVYsJzrVKNBgwmU3Y29oY1PjbkB9lYr6muVUvdxksuIA-J5D9gmuW4bcxGULvOe0dG9s42yn1JBLnVK3d65dadBC53emUectdjjsK5n5ac9NpSEFcGHXqQZWf_aPgGNQqCNg</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Lanin, A.G.</creator><creator>Muravin, E.L.</creator><creator>Popov, V.P.</creator><creator>Turchin, V.N.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QQ</scope></search><sort><creationdate>20030301</creationdate><title>Thermal shock resistance and thermal-mechanical processing of sapphire</title><author>Lanin, A.G. ; Muravin, E.L. ; Popov, V.P. ; Turchin, V.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-ea1c8a243e50b70fe80391f284fb88e920c844d511a3ffab1ad1326ca4c1f0f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Al 2O 3</topic><topic>Fracture</topic><topic>Heat treatment</topic><topic>Modelling</topic><topic>Sapphire</topic><topic>Thermal shock resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanin, A.G.</creatorcontrib><creatorcontrib>Muravin, E.L.</creatorcontrib><creatorcontrib>Popov, V.P.</creatorcontrib><creatorcontrib>Turchin, V.N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Ceramic Abstracts</collection><jtitle>Journal of the European Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanin, A.G.</au><au>Muravin, E.L.</au><au>Popov, V.P.</au><au>Turchin, V.N.</au><au>WCA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal shock resistance and thermal-mechanical processing of sapphire</atitle><jtitle>Journal of the European Ceramic Society</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>23</volume><issue>3</issue><spage>455</spage><epage>468</epage><pages>455-468</pages><issn>0955-2219</issn><eissn>1873-619X</eissn><abstract>The finite elements method was applied to calculate transient thermal stresses in sapphire with taking into account the crystal's anisotropy, scale factor, temperature function of heat transfer and other properties. The sapphire fracture behaviour as compared to ceramic polycrystalline materials under heat load, differs due to two factors: (a) twinning type strain at rather low test temperatures &lt;200  °C and (b) fracture toughness anisotropy. The cracking behaviour and thermal shock resistance (TSR) of the crystal against its dimensions, orientation and the heat load type was explained using the force fracture mechanics and the twinning and cracking features in the tensile and compressive stress fields. The influence of residual stresses after stress relaxation was studied. A possibility to increase the strength by 2–3 times and TSR of sapphire using a thermomechanical process was shown. This enables thermal stress generation under high-rate heatup to 1500–2000 °C, thus lowering the stress concentration on defects through local stress relaxation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0955-2219(02)00093-6</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-2219
ispartof Journal of the European Ceramic Society, 2003-03, Vol.23 (3), p.455-468
issn 0955-2219
1873-619X
language eng
recordid cdi_proquest_miscellaneous_28061323
source Elsevier ScienceDirect Journals Complete
subjects Al 2O 3
Fracture
Heat treatment
Modelling
Sapphire
Thermal shock resistance
title Thermal shock resistance and thermal-mechanical processing of sapphire
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20shock%20resistance%20and%20thermal-mechanical%20processing%20of%20sapphire&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.au=Lanin,%20A.G.&rft.date=2003-03-01&rft.volume=23&rft.issue=3&rft.spage=455&rft.epage=468&rft.pages=455-468&rft.issn=0955-2219&rft.eissn=1873-619X&rft_id=info:doi/10.1016/S0955-2219(02)00093-6&rft_dat=%3Cproquest_cross%3E28045611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28045611&rft_id=info:pmid/&rft_els_id=S0955221902000936&rfr_iscdi=true