Thermal shock resistance and thermal-mechanical processing of sapphire
The finite elements method was applied to calculate transient thermal stresses in sapphire with taking into account the crystal's anisotropy, scale factor, temperature function of heat transfer and other properties. The sapphire fracture behaviour as compared to ceramic polycrystalline material...
Gespeichert in:
Veröffentlicht in: | Journal of the European Ceramic Society 2003-03, Vol.23 (3), p.455-468 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | 3 |
container_start_page | 455 |
container_title | Journal of the European Ceramic Society |
container_volume | 23 |
creator | Lanin, A.G. Muravin, E.L. Popov, V.P. Turchin, V.N. |
description | The finite elements method was applied to calculate transient thermal stresses in sapphire with taking into account the crystal's anisotropy, scale factor, temperature function of heat transfer and other properties. The sapphire fracture behaviour as compared to ceramic polycrystalline materials under heat load, differs due to two factors: (a) twinning type strain at rather low test temperatures |
doi_str_mv | 10.1016/S0955-2219(02)00093-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28061323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955221902000936</els_id><sourcerecordid>28045611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-ea1c8a243e50b70fe80391f284fb88e920c844d511a3ffab1ad1326ca4c1f0f13</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKs_QdiT6GF1JvvR7EmkWBUKHqzgLaTZiRvdL5Ot4L837YpXPWUgz_sy8zB2inCJgPnVExRZFnOOxTnwCwAokjjfYxMUszBg8bLPJr_IITvy_g0AZ1AUE7ZYVeQaVUe-6vR75MhbP6hWU6TaMhrGz7ghXanW6sD1rtPkvW1fo85EXvV9ZR0dswOjak8nP--UPS9uV_P7ePl49zC_WcY6TbIhJoVaKJ4mlMF6BoYEJAUaLlKzFoIKDlqkaZkhqsQYtUZVYsJzrVKNBgwmU3Y29oY1PjbkB9lYr6muVUvdxksuIA-J5D9gmuW4bcxGULvOe0dG9s42yn1JBLnVK3d65dadBC53emUectdjjsK5n5ac9NpSEFcGHXqQZWf_aPgGNQqCNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28045611</pqid></control><display><type>article</type><title>Thermal shock resistance and thermal-mechanical processing of sapphire</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lanin, A.G. ; Muravin, E.L. ; Popov, V.P. ; Turchin, V.N.</creator><contributor>WCA</contributor><creatorcontrib>Lanin, A.G. ; Muravin, E.L. ; Popov, V.P. ; Turchin, V.N. ; WCA</creatorcontrib><description>The finite elements method was applied to calculate transient thermal stresses in sapphire with taking into account the crystal's anisotropy, scale factor, temperature function of heat transfer and other properties. The sapphire fracture behaviour as compared to ceramic polycrystalline materials under heat load, differs due to two factors: (a) twinning type strain at rather low test temperatures <200 °C and (b) fracture toughness anisotropy. The cracking behaviour and thermal shock resistance (TSR) of the crystal against its dimensions, orientation and the heat load type was explained using the force fracture mechanics and the twinning and cracking features in the tensile and compressive stress fields. The influence of residual stresses after stress relaxation was studied. A possibility to increase the strength by 2–3 times and TSR of sapphire using a thermomechanical process was shown. This enables thermal stress generation under high-rate heatup to 1500–2000 °C, thus lowering the stress concentration on defects through local stress relaxation.</description><identifier>ISSN: 0955-2219</identifier><identifier>EISSN: 1873-619X</identifier><identifier>DOI: 10.1016/S0955-2219(02)00093-6</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Al 2O 3 ; Fracture ; Heat treatment ; Modelling ; Sapphire ; Thermal shock resistance</subject><ispartof>Journal of the European Ceramic Society, 2003-03, Vol.23 (3), p.455-468</ispartof><rights>2002 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-ea1c8a243e50b70fe80391f284fb88e920c844d511a3ffab1ad1326ca4c1f0f13</citedby><cites>FETCH-LOGICAL-c435t-ea1c8a243e50b70fe80391f284fb88e920c844d511a3ffab1ad1326ca4c1f0f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0955-2219(02)00093-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><contributor>WCA</contributor><creatorcontrib>Lanin, A.G.</creatorcontrib><creatorcontrib>Muravin, E.L.</creatorcontrib><creatorcontrib>Popov, V.P.</creatorcontrib><creatorcontrib>Turchin, V.N.</creatorcontrib><title>Thermal shock resistance and thermal-mechanical processing of sapphire</title><title>Journal of the European Ceramic Society</title><description>The finite elements method was applied to calculate transient thermal stresses in sapphire with taking into account the crystal's anisotropy, scale factor, temperature function of heat transfer and other properties. The sapphire fracture behaviour as compared to ceramic polycrystalline materials under heat load, differs due to two factors: (a) twinning type strain at rather low test temperatures <200 °C and (b) fracture toughness anisotropy. The cracking behaviour and thermal shock resistance (TSR) of the crystal against its dimensions, orientation and the heat load type was explained using the force fracture mechanics and the twinning and cracking features in the tensile and compressive stress fields. The influence of residual stresses after stress relaxation was studied. A possibility to increase the strength by 2–3 times and TSR of sapphire using a thermomechanical process was shown. This enables thermal stress generation under high-rate heatup to 1500–2000 °C, thus lowering the stress concentration on defects through local stress relaxation.</description><subject>Al 2O 3</subject><subject>Fracture</subject><subject>Heat treatment</subject><subject>Modelling</subject><subject>Sapphire</subject><subject>Thermal shock resistance</subject><issn>0955-2219</issn><issn>1873-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKs_QdiT6GF1JvvR7EmkWBUKHqzgLaTZiRvdL5Ot4L837YpXPWUgz_sy8zB2inCJgPnVExRZFnOOxTnwCwAokjjfYxMUszBg8bLPJr_IITvy_g0AZ1AUE7ZYVeQaVUe-6vR75MhbP6hWU6TaMhrGz7ghXanW6sD1rtPkvW1fo85EXvV9ZR0dswOjak8nP--UPS9uV_P7ePl49zC_WcY6TbIhJoVaKJ4mlMF6BoYEJAUaLlKzFoIKDlqkaZkhqsQYtUZVYsJzrVKNBgwmU3Y29oY1PjbkB9lYr6muVUvdxksuIA-J5D9gmuW4bcxGULvOe0dG9s42yn1JBLnVK3d65dadBC53emUectdjjsK5n5ac9NpSEFcGHXqQZWf_aPgGNQqCNg</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Lanin, A.G.</creator><creator>Muravin, E.L.</creator><creator>Popov, V.P.</creator><creator>Turchin, V.N.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QQ</scope></search><sort><creationdate>20030301</creationdate><title>Thermal shock resistance and thermal-mechanical processing of sapphire</title><author>Lanin, A.G. ; Muravin, E.L. ; Popov, V.P. ; Turchin, V.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-ea1c8a243e50b70fe80391f284fb88e920c844d511a3ffab1ad1326ca4c1f0f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Al 2O 3</topic><topic>Fracture</topic><topic>Heat treatment</topic><topic>Modelling</topic><topic>Sapphire</topic><topic>Thermal shock resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanin, A.G.</creatorcontrib><creatorcontrib>Muravin, E.L.</creatorcontrib><creatorcontrib>Popov, V.P.</creatorcontrib><creatorcontrib>Turchin, V.N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Ceramic Abstracts</collection><jtitle>Journal of the European Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanin, A.G.</au><au>Muravin, E.L.</au><au>Popov, V.P.</au><au>Turchin, V.N.</au><au>WCA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal shock resistance and thermal-mechanical processing of sapphire</atitle><jtitle>Journal of the European Ceramic Society</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>23</volume><issue>3</issue><spage>455</spage><epage>468</epage><pages>455-468</pages><issn>0955-2219</issn><eissn>1873-619X</eissn><abstract>The finite elements method was applied to calculate transient thermal stresses in sapphire with taking into account the crystal's anisotropy, scale factor, temperature function of heat transfer and other properties. The sapphire fracture behaviour as compared to ceramic polycrystalline materials under heat load, differs due to two factors: (a) twinning type strain at rather low test temperatures <200 °C and (b) fracture toughness anisotropy. The cracking behaviour and thermal shock resistance (TSR) of the crystal against its dimensions, orientation and the heat load type was explained using the force fracture mechanics and the twinning and cracking features in the tensile and compressive stress fields. The influence of residual stresses after stress relaxation was studied. A possibility to increase the strength by 2–3 times and TSR of sapphire using a thermomechanical process was shown. This enables thermal stress generation under high-rate heatup to 1500–2000 °C, thus lowering the stress concentration on defects through local stress relaxation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0955-2219(02)00093-6</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-2219 |
ispartof | Journal of the European Ceramic Society, 2003-03, Vol.23 (3), p.455-468 |
issn | 0955-2219 1873-619X |
language | eng |
recordid | cdi_proquest_miscellaneous_28061323 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Al 2O 3 Fracture Heat treatment Modelling Sapphire Thermal shock resistance |
title | Thermal shock resistance and thermal-mechanical processing of sapphire |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20shock%20resistance%20and%20thermal-mechanical%20processing%20of%20sapphire&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.au=Lanin,%20A.G.&rft.date=2003-03-01&rft.volume=23&rft.issue=3&rft.spage=455&rft.epage=468&rft.pages=455-468&rft.issn=0955-2219&rft.eissn=1873-619X&rft_id=info:doi/10.1016/S0955-2219(02)00093-6&rft_dat=%3Cproquest_cross%3E28045611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28045611&rft_id=info:pmid/&rft_els_id=S0955221902000936&rfr_iscdi=true |