Mechanistic origins of methyl-driven Overhauser DNP
The Overhauser effect in the dynamic nuclear polarization (DNP) of non-conducting solids has drawn much attention due to the potential for efficient high-field DNP as well as a general interest in the underlying principles that enable the Overhauser effect in small molecules. We recently reported th...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-04, Vol.158 (15) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Perras, Frédéric A. Matsuki, Yoh Southern, Scott A. Dubroca, Thierry Flesariu, Dragos F. Van Tol, Johan Constantinides, Christos P. Koutentis, Panayiotis A. |
description | The Overhauser effect in the dynamic nuclear polarization (DNP) of non-conducting solids has drawn much attention due to the potential for efficient high-field DNP as well as a general interest in the underlying principles that enable the Overhauser effect in small molecules. We recently reported the observation of 1H and 2H Overhauser effects in H3C- or D3C-functionalized Blatter radical analogs, which we presumed to be caused by methyl rotation. In this work, we look at the mechanism for methyl-driven Overhauser DNP in greater detail, considering methyl librations and tunneling in addition to classical rotation. We predict the temperature dependence of these mechanisms using density functional theory and spin dynamics simulations. Comparisons with results from ultralow-temperature magic angle spinning-DNP experiments revealed that cross-relaxation at temperatures above 60 K originates from both libration and rotation, while librations dominate at lower temperatures. Due to the zero-point vibrational nature of these motions, they are not quenched by very low temperatures, and methyl-driven Overhauser DNP is expected to increase in efficiency down to 0 K, predominantly due to increases in nuclear relaxation times. |
doi_str_mv | 10.1063/5.0149664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2806075066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806075066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-5875c1bd23ad3f713fcdf3027881b9b29a06258eebb09b9b58d297a9518d3cae3</originalsourceid><addsrcrecordid>eNp90M1OGzEUBWALUZGQsugLoBHdQKWh99rx3xJRoJVo6aKsLY_HQxwl42DPIPH2dZSUBYuuLF19Ojo-hHxCuEQQ7Cu_BJxrIeYHZIqgdC2FhkMyBaBYawFiQo5zXgIASjo_IhMmQTOtcUrYT-8Wtg95CK6KKTyFPlexq9Z-WLyu6jaFF99XDy8-LeyYfaq-_fr9kXzo7Cr7k_07I4-3N3-uv9f3D3c_rq_uazdHGGquJHfYtJTZlnUSWefajgGVSmGjG6otCMqV900Duhy4aqmWVnNULXPWsxk52-XG0s5kF4bS1cW-924wqCVwjgWd79AmxefR58GsQ3Z-tbK9j2M2VIEAyUGIQj-_o8s4pr58YasoMoVUFXWxUy7FnJPvzCaFtU2vBsFs5zbc7Ocu9nSfODZr377Jf_sW8GUHtu3tEGL_n7S_cIyEUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802138128</pqid></control><display><type>article</type><title>Mechanistic origins of methyl-driven Overhauser DNP</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Perras, Frédéric A. ; Matsuki, Yoh ; Southern, Scott A. ; Dubroca, Thierry ; Flesariu, Dragos F. ; Van Tol, Johan ; Constantinides, Christos P. ; Koutentis, Panayiotis A.</creator><creatorcontrib>Perras, Frédéric A. ; Matsuki, Yoh ; Southern, Scott A. ; Dubroca, Thierry ; Flesariu, Dragos F. ; Van Tol, Johan ; Constantinides, Christos P. ; Koutentis, Panayiotis A. ; Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><description>The Overhauser effect in the dynamic nuclear polarization (DNP) of non-conducting solids has drawn much attention due to the potential for efficient high-field DNP as well as a general interest in the underlying principles that enable the Overhauser effect in small molecules. We recently reported the observation of 1H and 2H Overhauser effects in H3C- or D3C-functionalized Blatter radical analogs, which we presumed to be caused by methyl rotation. In this work, we look at the mechanism for methyl-driven Overhauser DNP in greater detail, considering methyl librations and tunneling in addition to classical rotation. We predict the temperature dependence of these mechanisms using density functional theory and spin dynamics simulations. Comparisons with results from ultralow-temperature magic angle spinning-DNP experiments revealed that cross-relaxation at temperatures above 60 K originates from both libration and rotation, while librations dominate at lower temperatures. Due to the zero-point vibrational nature of these motions, they are not quenched by very low temperatures, and methyl-driven Overhauser DNP is expected to increase in efficiency down to 0 K, predominantly due to increases in nuclear relaxation times.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0149664</identifier><identifier>PMID: 37093991</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cross relaxation ; Density functional theory ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Libration ; Low temperature ; Nuclear relaxation ; Overhauser effect ; Rotation ; Spin dynamics ; Temperature dependence</subject><ispartof>The Journal of chemical physics, 2023-04, Vol.158 (15)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-5875c1bd23ad3f713fcdf3027881b9b29a06258eebb09b9b58d297a9518d3cae3</citedby><cites>FETCH-LOGICAL-c410t-5875c1bd23ad3f713fcdf3027881b9b29a06258eebb09b9b58d297a9518d3cae3</cites><orcidid>0000-0002-7127-088X ; 0000-0001-5339-6123 ; 0000-0001-6972-2149 ; 0000-0002-7331-6554 ; 0000-0001-6364-1102 ; 0000-0002-2662-5119 ; 0000-0002-4652-7567 ; 0000000273316554 ; 0000000169722149 ; 000000027127088X ; 0000000246527567 ; 0000000153396123 ; 0000000226625119 ; 0000000163641102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0149664$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37093991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1970551$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Perras, Frédéric A.</creatorcontrib><creatorcontrib>Matsuki, Yoh</creatorcontrib><creatorcontrib>Southern, Scott A.</creatorcontrib><creatorcontrib>Dubroca, Thierry</creatorcontrib><creatorcontrib>Flesariu, Dragos F.</creatorcontrib><creatorcontrib>Van Tol, Johan</creatorcontrib><creatorcontrib>Constantinides, Christos P.</creatorcontrib><creatorcontrib>Koutentis, Panayiotis A.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><title>Mechanistic origins of methyl-driven Overhauser DNP</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The Overhauser effect in the dynamic nuclear polarization (DNP) of non-conducting solids has drawn much attention due to the potential for efficient high-field DNP as well as a general interest in the underlying principles that enable the Overhauser effect in small molecules. We recently reported the observation of 1H and 2H Overhauser effects in H3C- or D3C-functionalized Blatter radical analogs, which we presumed to be caused by methyl rotation. In this work, we look at the mechanism for methyl-driven Overhauser DNP in greater detail, considering methyl librations and tunneling in addition to classical rotation. We predict the temperature dependence of these mechanisms using density functional theory and spin dynamics simulations. Comparisons with results from ultralow-temperature magic angle spinning-DNP experiments revealed that cross-relaxation at temperatures above 60 K originates from both libration and rotation, while librations dominate at lower temperatures. Due to the zero-point vibrational nature of these motions, they are not quenched by very low temperatures, and methyl-driven Overhauser DNP is expected to increase in efficiency down to 0 K, predominantly due to increases in nuclear relaxation times.</description><subject>Cross relaxation</subject><subject>Density functional theory</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Libration</subject><subject>Low temperature</subject><subject>Nuclear relaxation</subject><subject>Overhauser effect</subject><subject>Rotation</subject><subject>Spin dynamics</subject><subject>Temperature dependence</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M1OGzEUBWALUZGQsugLoBHdQKWh99rx3xJRoJVo6aKsLY_HQxwl42DPIPH2dZSUBYuuLF19Ojo-hHxCuEQQ7Cu_BJxrIeYHZIqgdC2FhkMyBaBYawFiQo5zXgIASjo_IhMmQTOtcUrYT-8Wtg95CK6KKTyFPlexq9Z-WLyu6jaFF99XDy8-LeyYfaq-_fr9kXzo7Cr7k_07I4-3N3-uv9f3D3c_rq_uazdHGGquJHfYtJTZlnUSWefajgGVSmGjG6otCMqV900Duhy4aqmWVnNULXPWsxk52-XG0s5kF4bS1cW-924wqCVwjgWd79AmxefR58GsQ3Z-tbK9j2M2VIEAyUGIQj-_o8s4pr58YasoMoVUFXWxUy7FnJPvzCaFtU2vBsFs5zbc7Ocu9nSfODZr377Jf_sW8GUHtu3tEGL_n7S_cIyEUQ</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Perras, Frédéric A.</creator><creator>Matsuki, Yoh</creator><creator>Southern, Scott A.</creator><creator>Dubroca, Thierry</creator><creator>Flesariu, Dragos F.</creator><creator>Van Tol, Johan</creator><creator>Constantinides, Christos P.</creator><creator>Koutentis, Panayiotis A.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7127-088X</orcidid><orcidid>https://orcid.org/0000-0001-5339-6123</orcidid><orcidid>https://orcid.org/0000-0001-6972-2149</orcidid><orcidid>https://orcid.org/0000-0002-7331-6554</orcidid><orcidid>https://orcid.org/0000-0001-6364-1102</orcidid><orcidid>https://orcid.org/0000-0002-2662-5119</orcidid><orcidid>https://orcid.org/0000-0002-4652-7567</orcidid><orcidid>https://orcid.org/0000000273316554</orcidid><orcidid>https://orcid.org/0000000169722149</orcidid><orcidid>https://orcid.org/000000027127088X</orcidid><orcidid>https://orcid.org/0000000246527567</orcidid><orcidid>https://orcid.org/0000000153396123</orcidid><orcidid>https://orcid.org/0000000226625119</orcidid><orcidid>https://orcid.org/0000000163641102</orcidid></search><sort><creationdate>20230421</creationdate><title>Mechanistic origins of methyl-driven Overhauser DNP</title><author>Perras, Frédéric A. ; Matsuki, Yoh ; Southern, Scott A. ; Dubroca, Thierry ; Flesariu, Dragos F. ; Van Tol, Johan ; Constantinides, Christos P. ; Koutentis, Panayiotis A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-5875c1bd23ad3f713fcdf3027881b9b29a06258eebb09b9b58d297a9518d3cae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cross relaxation</topic><topic>Density functional theory</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Libration</topic><topic>Low temperature</topic><topic>Nuclear relaxation</topic><topic>Overhauser effect</topic><topic>Rotation</topic><topic>Spin dynamics</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perras, Frédéric A.</creatorcontrib><creatorcontrib>Matsuki, Yoh</creatorcontrib><creatorcontrib>Southern, Scott A.</creatorcontrib><creatorcontrib>Dubroca, Thierry</creatorcontrib><creatorcontrib>Flesariu, Dragos F.</creatorcontrib><creatorcontrib>Van Tol, Johan</creatorcontrib><creatorcontrib>Constantinides, Christos P.</creatorcontrib><creatorcontrib>Koutentis, Panayiotis A.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perras, Frédéric A.</au><au>Matsuki, Yoh</au><au>Southern, Scott A.</au><au>Dubroca, Thierry</au><au>Flesariu, Dragos F.</au><au>Van Tol, Johan</au><au>Constantinides, Christos P.</au><au>Koutentis, Panayiotis A.</au><aucorp>Ames Laboratory (AMES), Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic origins of methyl-driven Overhauser DNP</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-04-21</date><risdate>2023</risdate><volume>158</volume><issue>15</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The Overhauser effect in the dynamic nuclear polarization (DNP) of non-conducting solids has drawn much attention due to the potential for efficient high-field DNP as well as a general interest in the underlying principles that enable the Overhauser effect in small molecules. We recently reported the observation of 1H and 2H Overhauser effects in H3C- or D3C-functionalized Blatter radical analogs, which we presumed to be caused by methyl rotation. In this work, we look at the mechanism for methyl-driven Overhauser DNP in greater detail, considering methyl librations and tunneling in addition to classical rotation. We predict the temperature dependence of these mechanisms using density functional theory and spin dynamics simulations. Comparisons with results from ultralow-temperature magic angle spinning-DNP experiments revealed that cross-relaxation at temperatures above 60 K originates from both libration and rotation, while librations dominate at lower temperatures. Due to the zero-point vibrational nature of these motions, they are not quenched by very low temperatures, and methyl-driven Overhauser DNP is expected to increase in efficiency down to 0 K, predominantly due to increases in nuclear relaxation times.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37093991</pmid><doi>10.1063/5.0149664</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7127-088X</orcidid><orcidid>https://orcid.org/0000-0001-5339-6123</orcidid><orcidid>https://orcid.org/0000-0001-6972-2149</orcidid><orcidid>https://orcid.org/0000-0002-7331-6554</orcidid><orcidid>https://orcid.org/0000-0001-6364-1102</orcidid><orcidid>https://orcid.org/0000-0002-2662-5119</orcidid><orcidid>https://orcid.org/0000-0002-4652-7567</orcidid><orcidid>https://orcid.org/0000000273316554</orcidid><orcidid>https://orcid.org/0000000169722149</orcidid><orcidid>https://orcid.org/000000027127088X</orcidid><orcidid>https://orcid.org/0000000246527567</orcidid><orcidid>https://orcid.org/0000000153396123</orcidid><orcidid>https://orcid.org/0000000226625119</orcidid><orcidid>https://orcid.org/0000000163641102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-04, Vol.158 (15) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2806075066 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Cross relaxation Density functional theory INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Libration Low temperature Nuclear relaxation Overhauser effect Rotation Spin dynamics Temperature dependence |
title | Mechanistic origins of methyl-driven Overhauser DNP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20origins%20of%20methyl-driven%20Overhauser%20DNP&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Perras,%20Fr%C3%A9d%C3%A9ric%20A.&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA%20(United%20States)&rft.date=2023-04-21&rft.volume=158&rft.issue=15&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0149664&rft_dat=%3Cproquest_osti_%3E2806075066%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802138128&rft_id=info:pmid/37093991&rfr_iscdi=true |