On optimizing syntactic pattern recognition using tries and AI-based heuristic-search strategies

This paper deals with the problem of estimating, using enhanced artificial-intelligence (AI) techniques, a transmitted string X/sup */ by processing the corresponding string Y, which is a noisy version of X/sup */. It is assumed that Y contains substitution, insertion, and deletion (SID) errors. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2006-06, Vol.36 (3), p.611-622
Hauptverfasser: Badr, G., Oommen, B.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 622
container_issue 3
container_start_page 611
container_title IEEE transactions on cybernetics
container_volume 36
creator Badr, G.
Oommen, B.J.
description This paper deals with the problem of estimating, using enhanced artificial-intelligence (AI) techniques, a transmitted string X/sup */ by processing the corresponding string Y, which is a noisy version of X/sup */. It is assumed that Y contains substitution, insertion, and deletion (SID) errors. The best estimate X/sup +/ of X/sup */ is defined as that element of a dictionary H that minimizes the generalized Levenshtein distance (GLD) D(X,Y) between X and Y, for all X/spl isin/H. In this paper, it is shown how to evaluate D(X,Y) for every X/spl isin/H simultaneously, when the edit distances are general and the maximum number of errors is not given a priori, and when H is stored as a trie. A new scheme called clustered beam search (CBS) is first introduced, which is a heuristic-based search approach that enhances the well-known beam-search (BS) techniques used in AI. The new scheme is then applied to the approximate string-matching problem when the dictionary is stored as a trie. The new technique is compared with the benchmark depth-first search (DFS) trie-based technique (with respect to time and accuracy) using large and small dictionaries. The results demonstrate a marked improvement of up to 75% with respect to the total number of operations needed on three benchmark dictionaries, while yielding an accuracy comparable to the optimal. Experiments are also done to show the benefits of the CBS over the BS when the search is done on the trie. The results also demonstrate a marked improvement (more than 91%) for large dictionaries.
doi_str_mv 10.1109/TSMCB.2005.861860
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28060085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1634653</ieee_id><sourcerecordid>28978451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-118a4a6824cb8e7b0e42b180e79086149a60fda9b731d2eb09799b56cff1f1813</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EoqXwAxASijggLllmHMexj-2Kj0pFPVDOxnEmW1e7zmI7h_LrcdiVQByAky35eUd-52HsOcIKEfTbm8-f1hcrDtCulEQl4QE7RS2wBqH5w3IH1dRCoD5hT1K6AwANunvMTlB2hUdxyr5eh2raZ7_z333YVOk-ZOuyd9Xe5kwxVJHctAk--ylUc1qYHD2lyoahOr-se5toqG5pjj6VWJ3IRndbpRxtpk0Bn7JHo90menY8z9iX9-9u1h_rq-sPl-vzq9qVD-YaUVlhpeLC9Yq6HkjwHhVQp6F0E9pKGAer-67BgVNfemjdt9KNI46lSnPGXh_m7uP0baaUzc4nR9utDTTNyUgFbcN5-0-QK90p0eJ_gCAB1DLxzV_Bsm3kXav1gr76A72b5hjKYoxSWhVVShYID5CLU0qRRrOPfmfjvUEwi3jzU7xZxJuD-JJ5eRw89zsafiWOpgvw4gB4IvrtuRGybZoftcuxLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889841986</pqid></control><display><type>article</type><title>On optimizing syntactic pattern recognition using tries and AI-based heuristic-search strategies</title><source>IEEE Electronic Library (IEL)</source><creator>Badr, G. ; Oommen, B.J.</creator><creatorcontrib>Badr, G. ; Oommen, B.J.</creatorcontrib><description>This paper deals with the problem of estimating, using enhanced artificial-intelligence (AI) techniques, a transmitted string X/sup */ by processing the corresponding string Y, which is a noisy version of X/sup */. It is assumed that Y contains substitution, insertion, and deletion (SID) errors. The best estimate X/sup +/ of X/sup */ is defined as that element of a dictionary H that minimizes the generalized Levenshtein distance (GLD) D(X,Y) between X and Y, for all X/spl isin/H. In this paper, it is shown how to evaluate D(X,Y) for every X/spl isin/H simultaneously, when the edit distances are general and the maximum number of errors is not given a priori, and when H is stored as a trie. A new scheme called clustered beam search (CBS) is first introduced, which is a heuristic-based search approach that enhances the well-known beam-search (BS) techniques used in AI. The new scheme is then applied to the approximate string-matching problem when the dictionary is stored as a trie. The new technique is compared with the benchmark depth-first search (DFS) trie-based technique (with respect to time and accuracy) using large and small dictionaries. The results demonstrate a marked improvement of up to 75% with respect to the total number of operations needed on three benchmark dictionaries, while yielding an accuracy comparable to the optimal. Experiments are also done to show the benefits of the CBS over the BS when the search is done on the trie. The results also demonstrate a marked improvement (more than 91%) for large dictionaries.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2005.861860</identifier><identifier>PMID: 16761814</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Approximate string matching ; Artificial Intelligence ; artificial intelligence (AI) ; Benchmarking ; Computer science ; Costs ; Cybernetics ; Data structures ; Dictionaries ; Errors ; Information Storage and Retrieval - methods ; Language ; local beam search (BS) ; Natural Language Processing ; noisy syntactic recognition using tries ; Optimization ; Pattern matching ; Pattern recognition ; Pattern Recognition, Automated - methods ; Searching ; Speech Recognition Software ; Strings ; trie-based syntactic pattern recognition (PR)</subject><ispartof>IEEE transactions on cybernetics, 2006-06, Vol.36 (3), p.611-622</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-118a4a6824cb8e7b0e42b180e79086149a60fda9b731d2eb09799b56cff1f1813</citedby><cites>FETCH-LOGICAL-c441t-118a4a6824cb8e7b0e42b180e79086149a60fda9b731d2eb09799b56cff1f1813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1634653$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1634653$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16761814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Badr, G.</creatorcontrib><creatorcontrib>Oommen, B.J.</creatorcontrib><title>On optimizing syntactic pattern recognition using tries and AI-based heuristic-search strategies</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>This paper deals with the problem of estimating, using enhanced artificial-intelligence (AI) techniques, a transmitted string X/sup */ by processing the corresponding string Y, which is a noisy version of X/sup */. It is assumed that Y contains substitution, insertion, and deletion (SID) errors. The best estimate X/sup +/ of X/sup */ is defined as that element of a dictionary H that minimizes the generalized Levenshtein distance (GLD) D(X,Y) between X and Y, for all X/spl isin/H. In this paper, it is shown how to evaluate D(X,Y) for every X/spl isin/H simultaneously, when the edit distances are general and the maximum number of errors is not given a priori, and when H is stored as a trie. A new scheme called clustered beam search (CBS) is first introduced, which is a heuristic-based search approach that enhances the well-known beam-search (BS) techniques used in AI. The new scheme is then applied to the approximate string-matching problem when the dictionary is stored as a trie. The new technique is compared with the benchmark depth-first search (DFS) trie-based technique (with respect to time and accuracy) using large and small dictionaries. The results demonstrate a marked improvement of up to 75% with respect to the total number of operations needed on three benchmark dictionaries, while yielding an accuracy comparable to the optimal. Experiments are also done to show the benefits of the CBS over the BS when the search is done on the trie. The results also demonstrate a marked improvement (more than 91%) for large dictionaries.</description><subject>Algorithms</subject><subject>Approximate string matching</subject><subject>Artificial Intelligence</subject><subject>artificial intelligence (AI)</subject><subject>Benchmarking</subject><subject>Computer science</subject><subject>Costs</subject><subject>Cybernetics</subject><subject>Data structures</subject><subject>Dictionaries</subject><subject>Errors</subject><subject>Information Storage and Retrieval - methods</subject><subject>Language</subject><subject>local beam search (BS)</subject><subject>Natural Language Processing</subject><subject>noisy syntactic recognition using tries</subject><subject>Optimization</subject><subject>Pattern matching</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Searching</subject><subject>Speech Recognition Software</subject><subject>Strings</subject><subject>trie-based syntactic pattern recognition (PR)</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EoqXwAxASijggLllmHMexj-2Kj0pFPVDOxnEmW1e7zmI7h_LrcdiVQByAky35eUd-52HsOcIKEfTbm8-f1hcrDtCulEQl4QE7RS2wBqH5w3IH1dRCoD5hT1K6AwANunvMTlB2hUdxyr5eh2raZ7_z333YVOk-ZOuyd9Xe5kwxVJHctAk--ylUc1qYHD2lyoahOr-se5toqG5pjj6VWJ3IRndbpRxtpk0Bn7JHo90menY8z9iX9-9u1h_rq-sPl-vzq9qVD-YaUVlhpeLC9Yq6HkjwHhVQp6F0E9pKGAer-67BgVNfemjdt9KNI46lSnPGXh_m7uP0baaUzc4nR9utDTTNyUgFbcN5-0-QK90p0eJ_gCAB1DLxzV_Bsm3kXav1gr76A72b5hjKYoxSWhVVShYID5CLU0qRRrOPfmfjvUEwi3jzU7xZxJuD-JJ5eRw89zsafiWOpgvw4gB4IvrtuRGybZoftcuxLA</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Badr, G.</creator><creator>Oommen, B.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20060601</creationdate><title>On optimizing syntactic pattern recognition using tries and AI-based heuristic-search strategies</title><author>Badr, G. ; Oommen, B.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-118a4a6824cb8e7b0e42b180e79086149a60fda9b731d2eb09799b56cff1f1813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Approximate string matching</topic><topic>Artificial Intelligence</topic><topic>artificial intelligence (AI)</topic><topic>Benchmarking</topic><topic>Computer science</topic><topic>Costs</topic><topic>Cybernetics</topic><topic>Data structures</topic><topic>Dictionaries</topic><topic>Errors</topic><topic>Information Storage and Retrieval - methods</topic><topic>Language</topic><topic>local beam search (BS)</topic><topic>Natural Language Processing</topic><topic>noisy syntactic recognition using tries</topic><topic>Optimization</topic><topic>Pattern matching</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Searching</topic><topic>Speech Recognition Software</topic><topic>Strings</topic><topic>trie-based syntactic pattern recognition (PR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badr, G.</creatorcontrib><creatorcontrib>Oommen, B.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badr, G.</au><au>Oommen, B.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On optimizing syntactic pattern recognition using tries and AI-based heuristic-search strategies</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>36</volume><issue>3</issue><spage>611</spage><epage>622</epage><pages>611-622</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>This paper deals with the problem of estimating, using enhanced artificial-intelligence (AI) techniques, a transmitted string X/sup */ by processing the corresponding string Y, which is a noisy version of X/sup */. It is assumed that Y contains substitution, insertion, and deletion (SID) errors. The best estimate X/sup +/ of X/sup */ is defined as that element of a dictionary H that minimizes the generalized Levenshtein distance (GLD) D(X,Y) between X and Y, for all X/spl isin/H. In this paper, it is shown how to evaluate D(X,Y) for every X/spl isin/H simultaneously, when the edit distances are general and the maximum number of errors is not given a priori, and when H is stored as a trie. A new scheme called clustered beam search (CBS) is first introduced, which is a heuristic-based search approach that enhances the well-known beam-search (BS) techniques used in AI. The new scheme is then applied to the approximate string-matching problem when the dictionary is stored as a trie. The new technique is compared with the benchmark depth-first search (DFS) trie-based technique (with respect to time and accuracy) using large and small dictionaries. The results demonstrate a marked improvement of up to 75% with respect to the total number of operations needed on three benchmark dictionaries, while yielding an accuracy comparable to the optimal. Experiments are also done to show the benefits of the CBS over the BS when the search is done on the trie. The results also demonstrate a marked improvement (more than 91%) for large dictionaries.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>16761814</pmid><doi>10.1109/TSMCB.2005.861860</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2006-06, Vol.36 (3), p.611-622
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_proquest_miscellaneous_28060085
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximate string matching
Artificial Intelligence
artificial intelligence (AI)
Benchmarking
Computer science
Costs
Cybernetics
Data structures
Dictionaries
Errors
Information Storage and Retrieval - methods
Language
local beam search (BS)
Natural Language Processing
noisy syntactic recognition using tries
Optimization
Pattern matching
Pattern recognition
Pattern Recognition, Automated - methods
Searching
Speech Recognition Software
Strings
trie-based syntactic pattern recognition (PR)
title On optimizing syntactic pattern recognition using tries and AI-based heuristic-search strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20optimizing%20syntactic%20pattern%20recognition%20using%20tries%20and%20AI-based%20heuristic-search%20strategies&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Badr,%20G.&rft.date=2006-06-01&rft.volume=36&rft.issue=3&rft.spage=611&rft.epage=622&rft.pages=611-622&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2005.861860&rft_dat=%3Cproquest_RIE%3E28978451%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889841986&rft_id=info:pmid/16761814&rft_ieee_id=1634653&rfr_iscdi=true