A practical approach to arc flash hazard analysis and reduction
Recent efforts to quantify the dangers associated with potential arc flash hazards rely on overcurrent protection to remove a given fault condition. The effectiveness of various devices is determined by a clearing time related to the maximum available fault current for each system location. As indus...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2005-01, Vol.41 (1), p.144-154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 1 |
container_start_page | 144 |
container_title | IEEE transactions on industry applications |
container_volume | 41 |
creator | Tinsley, H.W. Hodder, M. |
description | Recent efforts to quantify the dangers associated with potential arc flash hazards rely on overcurrent protection to remove a given fault condition. The effectiveness of various devices is determined by a clearing time related to the maximum available fault current for each system location. As industrial and commercial facilities begin to embrace arc flash labeling procedures and begin to recognize arc flash prevention as a part of a complete safety program, the current method of calculation will allow them to quantify the incident energy (cal/cm/sup 2/) associated with a maximum three-phase fault condition. Most faults produce current magnitudes less than the three-phase maximum. This paper will consider fault current magnitudes less than that of the maximum three-phase condition, and discuss the resulting calculations for incident energy across the range of current magnitudes. Under these additional scenarios, the performance of various overcurrent protection devices will be demonstrated. Associated considerations for design, modeling, and maintenance will be presented. |
doi_str_mv | 10.1109/TIA.2004.841010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28060064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1388672</ieee_id><sourcerecordid>2351000241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-3541bbe763025b63583fa09f7e2704b150fdcc0b9fa8009cf8c583a9c9939f6f3</originalsourceid><addsrcrecordid>eNp9kL1PwzAUxC0EEqUwM7BEDDClff6IE0-oqvioVImlzNaLY6up0ibYyVD-elwFCYmB6b3hd6e7I-SWwoxSUPPNajFjAGJWCAoUzsiEKq5SxWV-TiYAiqdKKXFJrkLYAVCRUTEhT4uk82j62mCTYNf5Fs026dsEvUlcg2GbbPELfZXgAZtjqEN8qsTbaoii9nBNLhw2wd783Cn5eHneLN_S9fvrarlYp4ZntE95JmhZ2lxyYFkpeVZwh6BcblkOoqQZuMoYKJXDIkY1rjARQWVU7OCk41PyOPrGhJ-DDb3e18HYpsGDbYegFVCpOIuVp-ThX5IVIAGkiOD9H3DXDj62DLqQuWCCMYjQfISMb0Pw1unO13v0R01Bn3bXcXd92l2Pu0fF3aiorbW_NC-iKePfujp8Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867424220</pqid></control><display><type>article</type><title>A practical approach to arc flash hazard analysis and reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Tinsley, H.W. ; Hodder, M.</creator><creatorcontrib>Tinsley, H.W. ; Hodder, M.</creatorcontrib><description>Recent efforts to quantify the dangers associated with potential arc flash hazards rely on overcurrent protection to remove a given fault condition. The effectiveness of various devices is determined by a clearing time related to the maximum available fault current for each system location. As industrial and commercial facilities begin to embrace arc flash labeling procedures and begin to recognize arc flash prevention as a part of a complete safety program, the current method of calculation will allow them to quantify the incident energy (cal/cm/sup 2/) associated with a maximum three-phase fault condition. Most faults produce current magnitudes less than the three-phase maximum. This paper will consider fault current magnitudes less than that of the maximum three-phase condition, and discuss the resulting calculations for incident energy across the range of current magnitudes. Under these additional scenarios, the performance of various overcurrent protection devices will be demonstrated. Associated considerations for design, modeling, and maintenance will be presented.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2004.841010</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arc flash hazard ; constant energy ; Design engineering ; Devices ; Fault currents ; Faults ; Fires ; Hazards ; Labeling ; Maintenance ; Mathematical models ; Occupational safety ; Overcurrent ; Personnel ; Power system analysis computing ; Power system protection ; Pulp and paper industry ; Recognition ; Safety ; unbalanced faults ; Voltage ; worst case scenario</subject><ispartof>IEEE transactions on industry applications, 2005-01, Vol.41 (1), p.144-154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-3541bbe763025b63583fa09f7e2704b150fdcc0b9fa8009cf8c583a9c9939f6f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1388672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1388672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tinsley, H.W.</creatorcontrib><creatorcontrib>Hodder, M.</creatorcontrib><title>A practical approach to arc flash hazard analysis and reduction</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Recent efforts to quantify the dangers associated with potential arc flash hazards rely on overcurrent protection to remove a given fault condition. The effectiveness of various devices is determined by a clearing time related to the maximum available fault current for each system location. As industrial and commercial facilities begin to embrace arc flash labeling procedures and begin to recognize arc flash prevention as a part of a complete safety program, the current method of calculation will allow them to quantify the incident energy (cal/cm/sup 2/) associated with a maximum three-phase fault condition. Most faults produce current magnitudes less than the three-phase maximum. This paper will consider fault current magnitudes less than that of the maximum three-phase condition, and discuss the resulting calculations for incident energy across the range of current magnitudes. Under these additional scenarios, the performance of various overcurrent protection devices will be demonstrated. Associated considerations for design, modeling, and maintenance will be presented.</description><subject>Arc flash hazard</subject><subject>constant energy</subject><subject>Design engineering</subject><subject>Devices</subject><subject>Fault currents</subject><subject>Faults</subject><subject>Fires</subject><subject>Hazards</subject><subject>Labeling</subject><subject>Maintenance</subject><subject>Mathematical models</subject><subject>Occupational safety</subject><subject>Overcurrent</subject><subject>Personnel</subject><subject>Power system analysis computing</subject><subject>Power system protection</subject><subject>Pulp and paper industry</subject><subject>Recognition</subject><subject>Safety</subject><subject>unbalanced faults</subject><subject>Voltage</subject><subject>worst case scenario</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kL1PwzAUxC0EEqUwM7BEDDClff6IE0-oqvioVImlzNaLY6up0ibYyVD-elwFCYmB6b3hd6e7I-SWwoxSUPPNajFjAGJWCAoUzsiEKq5SxWV-TiYAiqdKKXFJrkLYAVCRUTEhT4uk82j62mCTYNf5Fs026dsEvUlcg2GbbPELfZXgAZtjqEN8qsTbaoii9nBNLhw2wd783Cn5eHneLN_S9fvrarlYp4ZntE95JmhZ2lxyYFkpeVZwh6BcblkOoqQZuMoYKJXDIkY1rjARQWVU7OCk41PyOPrGhJ-DDb3e18HYpsGDbYegFVCpOIuVp-ThX5IVIAGkiOD9H3DXDj62DLqQuWCCMYjQfISMb0Pw1unO13v0R01Bn3bXcXd92l2Pu0fF3aiorbW_NC-iKePfujp8Rg</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Tinsley, H.W.</creator><creator>Hodder, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>200501</creationdate><title>A practical approach to arc flash hazard analysis and reduction</title><author>Tinsley, H.W. ; Hodder, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-3541bbe763025b63583fa09f7e2704b150fdcc0b9fa8009cf8c583a9c9939f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Arc flash hazard</topic><topic>constant energy</topic><topic>Design engineering</topic><topic>Devices</topic><topic>Fault currents</topic><topic>Faults</topic><topic>Fires</topic><topic>Hazards</topic><topic>Labeling</topic><topic>Maintenance</topic><topic>Mathematical models</topic><topic>Occupational safety</topic><topic>Overcurrent</topic><topic>Personnel</topic><topic>Power system analysis computing</topic><topic>Power system protection</topic><topic>Pulp and paper industry</topic><topic>Recognition</topic><topic>Safety</topic><topic>unbalanced faults</topic><topic>Voltage</topic><topic>worst case scenario</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tinsley, H.W.</creatorcontrib><creatorcontrib>Hodder, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tinsley, H.W.</au><au>Hodder, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A practical approach to arc flash hazard analysis and reduction</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2005-01</date><risdate>2005</risdate><volume>41</volume><issue>1</issue><spage>144</spage><epage>154</epage><pages>144-154</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Recent efforts to quantify the dangers associated with potential arc flash hazards rely on overcurrent protection to remove a given fault condition. The effectiveness of various devices is determined by a clearing time related to the maximum available fault current for each system location. As industrial and commercial facilities begin to embrace arc flash labeling procedures and begin to recognize arc flash prevention as a part of a complete safety program, the current method of calculation will allow them to quantify the incident energy (cal/cm/sup 2/) associated with a maximum three-phase fault condition. Most faults produce current magnitudes less than the three-phase maximum. This paper will consider fault current magnitudes less than that of the maximum three-phase condition, and discuss the resulting calculations for incident energy across the range of current magnitudes. Under these additional scenarios, the performance of various overcurrent protection devices will be demonstrated. Associated considerations for design, modeling, and maintenance will be presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2004.841010</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2005-01, Vol.41 (1), p.144-154 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_miscellaneous_28060064 |
source | IEEE Electronic Library (IEL) |
subjects | Arc flash hazard constant energy Design engineering Devices Fault currents Faults Fires Hazards Labeling Maintenance Mathematical models Occupational safety Overcurrent Personnel Power system analysis computing Power system protection Pulp and paper industry Recognition Safety unbalanced faults Voltage worst case scenario |
title | A practical approach to arc flash hazard analysis and reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20practical%20approach%20to%20arc%20flash%20hazard%20analysis%20and%20reduction&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Tinsley,%20H.W.&rft.date=2005-01&rft.volume=41&rft.issue=1&rft.spage=144&rft.epage=154&rft.pages=144-154&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2004.841010&rft_dat=%3Cproquest_RIE%3E2351000241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867424220&rft_id=info:pmid/&rft_ieee_id=1388672&rfr_iscdi=true |