A practical approach to arc flash hazard analysis and reduction

Recent efforts to quantify the dangers associated with potential arc flash hazards rely on overcurrent protection to remove a given fault condition. The effectiveness of various devices is determined by a clearing time related to the maximum available fault current for each system location. As indus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2005-01, Vol.41 (1), p.144-154
Hauptverfasser: Tinsley, H.W., Hodder, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 144
container_title IEEE transactions on industry applications
container_volume 41
creator Tinsley, H.W.
Hodder, M.
description Recent efforts to quantify the dangers associated with potential arc flash hazards rely on overcurrent protection to remove a given fault condition. The effectiveness of various devices is determined by a clearing time related to the maximum available fault current for each system location. As industrial and commercial facilities begin to embrace arc flash labeling procedures and begin to recognize arc flash prevention as a part of a complete safety program, the current method of calculation will allow them to quantify the incident energy (cal/cm/sup 2/) associated with a maximum three-phase fault condition. Most faults produce current magnitudes less than the three-phase maximum. This paper will consider fault current magnitudes less than that of the maximum three-phase condition, and discuss the resulting calculations for incident energy across the range of current magnitudes. Under these additional scenarios, the performance of various overcurrent protection devices will be demonstrated. Associated considerations for design, modeling, and maintenance will be presented.
doi_str_mv 10.1109/TIA.2004.841010
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28060064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1388672</ieee_id><sourcerecordid>2351000241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-3541bbe763025b63583fa09f7e2704b150fdcc0b9fa8009cf8c583a9c9939f6f3</originalsourceid><addsrcrecordid>eNp9kL1PwzAUxC0EEqUwM7BEDDClff6IE0-oqvioVImlzNaLY6up0ibYyVD-elwFCYmB6b3hd6e7I-SWwoxSUPPNajFjAGJWCAoUzsiEKq5SxWV-TiYAiqdKKXFJrkLYAVCRUTEhT4uk82j62mCTYNf5Fs026dsEvUlcg2GbbPELfZXgAZtjqEN8qsTbaoii9nBNLhw2wd783Cn5eHneLN_S9fvrarlYp4ZntE95JmhZ2lxyYFkpeVZwh6BcblkOoqQZuMoYKJXDIkY1rjARQWVU7OCk41PyOPrGhJ-DDb3e18HYpsGDbYegFVCpOIuVp-ThX5IVIAGkiOD9H3DXDj62DLqQuWCCMYjQfISMb0Pw1unO13v0R01Bn3bXcXd92l2Pu0fF3aiorbW_NC-iKePfujp8Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867424220</pqid></control><display><type>article</type><title>A practical approach to arc flash hazard analysis and reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Tinsley, H.W. ; Hodder, M.</creator><creatorcontrib>Tinsley, H.W. ; Hodder, M.</creatorcontrib><description>Recent efforts to quantify the dangers associated with potential arc flash hazards rely on overcurrent protection to remove a given fault condition. The effectiveness of various devices is determined by a clearing time related to the maximum available fault current for each system location. As industrial and commercial facilities begin to embrace arc flash labeling procedures and begin to recognize arc flash prevention as a part of a complete safety program, the current method of calculation will allow them to quantify the incident energy (cal/cm/sup 2/) associated with a maximum three-phase fault condition. Most faults produce current magnitudes less than the three-phase maximum. This paper will consider fault current magnitudes less than that of the maximum three-phase condition, and discuss the resulting calculations for incident energy across the range of current magnitudes. Under these additional scenarios, the performance of various overcurrent protection devices will be demonstrated. Associated considerations for design, modeling, and maintenance will be presented.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2004.841010</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arc flash hazard ; constant energy ; Design engineering ; Devices ; Fault currents ; Faults ; Fires ; Hazards ; Labeling ; Maintenance ; Mathematical models ; Occupational safety ; Overcurrent ; Personnel ; Power system analysis computing ; Power system protection ; Pulp and paper industry ; Recognition ; Safety ; unbalanced faults ; Voltage ; worst case scenario</subject><ispartof>IEEE transactions on industry applications, 2005-01, Vol.41 (1), p.144-154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-3541bbe763025b63583fa09f7e2704b150fdcc0b9fa8009cf8c583a9c9939f6f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1388672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1388672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tinsley, H.W.</creatorcontrib><creatorcontrib>Hodder, M.</creatorcontrib><title>A practical approach to arc flash hazard analysis and reduction</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Recent efforts to quantify the dangers associated with potential arc flash hazards rely on overcurrent protection to remove a given fault condition. The effectiveness of various devices is determined by a clearing time related to the maximum available fault current for each system location. As industrial and commercial facilities begin to embrace arc flash labeling procedures and begin to recognize arc flash prevention as a part of a complete safety program, the current method of calculation will allow them to quantify the incident energy (cal/cm/sup 2/) associated with a maximum three-phase fault condition. Most faults produce current magnitudes less than the three-phase maximum. This paper will consider fault current magnitudes less than that of the maximum three-phase condition, and discuss the resulting calculations for incident energy across the range of current magnitudes. Under these additional scenarios, the performance of various overcurrent protection devices will be demonstrated. Associated considerations for design, modeling, and maintenance will be presented.</description><subject>Arc flash hazard</subject><subject>constant energy</subject><subject>Design engineering</subject><subject>Devices</subject><subject>Fault currents</subject><subject>Faults</subject><subject>Fires</subject><subject>Hazards</subject><subject>Labeling</subject><subject>Maintenance</subject><subject>Mathematical models</subject><subject>Occupational safety</subject><subject>Overcurrent</subject><subject>Personnel</subject><subject>Power system analysis computing</subject><subject>Power system protection</subject><subject>Pulp and paper industry</subject><subject>Recognition</subject><subject>Safety</subject><subject>unbalanced faults</subject><subject>Voltage</subject><subject>worst case scenario</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kL1PwzAUxC0EEqUwM7BEDDClff6IE0-oqvioVImlzNaLY6up0ibYyVD-elwFCYmB6b3hd6e7I-SWwoxSUPPNajFjAGJWCAoUzsiEKq5SxWV-TiYAiqdKKXFJrkLYAVCRUTEhT4uk82j62mCTYNf5Fs026dsEvUlcg2GbbPELfZXgAZtjqEN8qsTbaoii9nBNLhw2wd783Cn5eHneLN_S9fvrarlYp4ZntE95JmhZ2lxyYFkpeVZwh6BcblkOoqQZuMoYKJXDIkY1rjARQWVU7OCk41PyOPrGhJ-DDb3e18HYpsGDbYegFVCpOIuVp-ThX5IVIAGkiOD9H3DXDj62DLqQuWCCMYjQfISMb0Pw1unO13v0R01Bn3bXcXd92l2Pu0fF3aiorbW_NC-iKePfujp8Rg</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Tinsley, H.W.</creator><creator>Hodder, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>200501</creationdate><title>A practical approach to arc flash hazard analysis and reduction</title><author>Tinsley, H.W. ; Hodder, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-3541bbe763025b63583fa09f7e2704b150fdcc0b9fa8009cf8c583a9c9939f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Arc flash hazard</topic><topic>constant energy</topic><topic>Design engineering</topic><topic>Devices</topic><topic>Fault currents</topic><topic>Faults</topic><topic>Fires</topic><topic>Hazards</topic><topic>Labeling</topic><topic>Maintenance</topic><topic>Mathematical models</topic><topic>Occupational safety</topic><topic>Overcurrent</topic><topic>Personnel</topic><topic>Power system analysis computing</topic><topic>Power system protection</topic><topic>Pulp and paper industry</topic><topic>Recognition</topic><topic>Safety</topic><topic>unbalanced faults</topic><topic>Voltage</topic><topic>worst case scenario</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tinsley, H.W.</creatorcontrib><creatorcontrib>Hodder, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tinsley, H.W.</au><au>Hodder, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A practical approach to arc flash hazard analysis and reduction</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2005-01</date><risdate>2005</risdate><volume>41</volume><issue>1</issue><spage>144</spage><epage>154</epage><pages>144-154</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Recent efforts to quantify the dangers associated with potential arc flash hazards rely on overcurrent protection to remove a given fault condition. The effectiveness of various devices is determined by a clearing time related to the maximum available fault current for each system location. As industrial and commercial facilities begin to embrace arc flash labeling procedures and begin to recognize arc flash prevention as a part of a complete safety program, the current method of calculation will allow them to quantify the incident energy (cal/cm/sup 2/) associated with a maximum three-phase fault condition. Most faults produce current magnitudes less than the three-phase maximum. This paper will consider fault current magnitudes less than that of the maximum three-phase condition, and discuss the resulting calculations for incident energy across the range of current magnitudes. Under these additional scenarios, the performance of various overcurrent protection devices will be demonstrated. Associated considerations for design, modeling, and maintenance will be presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2004.841010</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2005-01, Vol.41 (1), p.144-154
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_miscellaneous_28060064
source IEEE Electronic Library (IEL)
subjects Arc flash hazard
constant energy
Design engineering
Devices
Fault currents
Faults
Fires
Hazards
Labeling
Maintenance
Mathematical models
Occupational safety
Overcurrent
Personnel
Power system analysis computing
Power system protection
Pulp and paper industry
Recognition
Safety
unbalanced faults
Voltage
worst case scenario
title A practical approach to arc flash hazard analysis and reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20practical%20approach%20to%20arc%20flash%20hazard%20analysis%20and%20reduction&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Tinsley,%20H.W.&rft.date=2005-01&rft.volume=41&rft.issue=1&rft.spage=144&rft.epage=154&rft.pages=144-154&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2004.841010&rft_dat=%3Cproquest_RIE%3E2351000241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867424220&rft_id=info:pmid/&rft_ieee_id=1388672&rfr_iscdi=true