Accuracy of plagioclase compositions from laboratory and Mars spacecraft thermal emission spectra

Plagioclase, the most abundant mineral in many terrestrial and Martian igneous rocks, exhibits a range of compositions that reflects changing conditions during crystallization. Thermal emission spectrometers (TES, THEMIS, and Mini‐TES) on board Mars spacecraft provide a means of determining average...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. E. Planets 2004-04, Vol.109 (E4), p.E04001-n/a
Hauptverfasser: Milam, Keith A., McSween Jr, Harry Y., Hamilton, Victoria E., Moersch, Jeffrey M., Christensen, Philip R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue E4
container_start_page E04001
container_title Journal of Geophysical Research. E. Planets
container_volume 109
creator Milam, Keith A.
McSween Jr, Harry Y.
Hamilton, Victoria E.
Moersch, Jeffrey M.
Christensen, Philip R.
description Plagioclase, the most abundant mineral in many terrestrial and Martian igneous rocks, exhibits a range of compositions that reflects changing conditions during crystallization. Thermal emission spectrometers (TES, THEMIS, and Mini‐TES) on board Mars spacecraft provide a means of determining average plagioclase compositions directly. We demonstrate that spectrally modeled average plagioclase compositions in terrestrial basalts, andesites, and dacites correspond to measured values to within +10/−6 An (molar [Ca/(Ca + Na)] × 100) of weighted average values and +13/−14 An of normative compositions. Analyses of spectra from two‐component plagioclase mixtures (varied by volume and composition) provide additional insight into potential effects of plagioclase zoning. Considering the variability in types of observed plagioclase zoning patterns in terrestrial volcanic rocks, normal zoning (calcic cores and sodic rims) cannot be assumed and thus cannot account for an apparent “sodic bias” seen in previous spectrally modeled compositions. This bias is better explained by higher abundances of sodic groundmass plagioclase relative to calcic phenocrysts. Deconvolution modeling of laboratory spectra of physical mixtures (convolved to various instrument resolutions) predicts that TES, THEMIS, and Mini‐TES spectra may be used to extract plagioclase compositions to within +9/−12 An, +11/−12 An, and +8/12 An (respectively) of measured values in coarse sand plagioclase mixtures, with 1σ standard deviations of ±4 An for laboratory, TES, and Mini‐TES resolutions and ±6 An for THEMIS resolution.
doi_str_mv 10.1029/2003JE002097
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28060006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28060006</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4674-3f91b48db6f100dfcef30c0b903c9037c4c0ce1f6822ba9bbc5036381c229c293</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EEqvSGz_AFzgRGH_ETo5ltd1StUVCII7WZNaGgLMOdlaw_x6jrYATWLJ88PO8mnkZeyrgpQDZv5IA6noDIKG3D9hKitY0UoJ8yFYgdNeAlPYxOy_lC9SjW6NBrBheEB0y0pGnwOeIn8ZEEYvnlKY5lXEZ077wkNPEIw4p45LykeN-x28xF15mJE8Zw8KXzz5PGLmfxlKqVf88LRmfsEcBY_Hn9-8Z-3C5eb--am7ebt-sL24a1MbqRoVeDLrbDSYIgF0gHxQQDD0oqteSJiAvgumkHLAfBmpBGdUJkrIn2asz9vyUO-f07eDL4uog5GPEvU-H4mQHpi5u_guKCgoj2gq-OIGUUynZBzfnccJ8dALcr87d351X_Nl9LhbCGDLuaSx_nNb2SmmonDxx38foj__MdNfbdxthla5Sc5LGsvgfvyXMX52xyrbu493W3Vq51q_vrpxSPwEm_J6u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18061615</pqid></control><display><type>article</type><title>Accuracy of plagioclase compositions from laboratory and Mars spacecraft thermal emission spectra</title><source>Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Milam, Keith A. ; McSween Jr, Harry Y. ; Hamilton, Victoria E. ; Moersch, Jeffrey M. ; Christensen, Philip R.</creator><creatorcontrib>Milam, Keith A. ; McSween Jr, Harry Y. ; Hamilton, Victoria E. ; Moersch, Jeffrey M. ; Christensen, Philip R.</creatorcontrib><description>Plagioclase, the most abundant mineral in many terrestrial and Martian igneous rocks, exhibits a range of compositions that reflects changing conditions during crystallization. Thermal emission spectrometers (TES, THEMIS, and Mini‐TES) on board Mars spacecraft provide a means of determining average plagioclase compositions directly. We demonstrate that spectrally modeled average plagioclase compositions in terrestrial basalts, andesites, and dacites correspond to measured values to within +10/−6 An (molar [Ca/(Ca + Na)] × 100) of weighted average values and +13/−14 An of normative compositions. Analyses of spectra from two‐component plagioclase mixtures (varied by volume and composition) provide additional insight into potential effects of plagioclase zoning. Considering the variability in types of observed plagioclase zoning patterns in terrestrial volcanic rocks, normal zoning (calcic cores and sodic rims) cannot be assumed and thus cannot account for an apparent “sodic bias” seen in previous spectrally modeled compositions. This bias is better explained by higher abundances of sodic groundmass plagioclase relative to calcic phenocrysts. Deconvolution modeling of laboratory spectra of physical mixtures (convolved to various instrument resolutions) predicts that TES, THEMIS, and Mini‐TES spectra may be used to extract plagioclase compositions to within +9/−12 An, +11/−12 An, and +8/12 An (respectively) of measured values in coarse sand plagioclase mixtures, with 1σ standard deviations of ±4 An for laboratory, TES, and Mini‐TES resolutions and ±6 An for THEMIS resolution.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2003JE002097</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; Gusev ; MER rover ; MOC ; MOLA ; TES ; THEMIS</subject><ispartof>Journal of Geophysical Research. E. Planets, 2004-04, Vol.109 (E4), p.E04001-n/a</ispartof><rights>Copyright 2004 by the American Geophysical Union.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4674-3f91b48db6f100dfcef30c0b903c9037c4c0ce1f6822ba9bbc5036381c229c293</citedby><cites>FETCH-LOGICAL-a4674-3f91b48db6f100dfcef30c0b903c9037c4c0ce1f6822ba9bbc5036381c229c293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2003JE002097$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2003JE002097$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15793340$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Milam, Keith A.</creatorcontrib><creatorcontrib>McSween Jr, Harry Y.</creatorcontrib><creatorcontrib>Hamilton, Victoria E.</creatorcontrib><creatorcontrib>Moersch, Jeffrey M.</creatorcontrib><creatorcontrib>Christensen, Philip R.</creatorcontrib><title>Accuracy of plagioclase compositions from laboratory and Mars spacecraft thermal emission spectra</title><title>Journal of Geophysical Research. E. Planets</title><addtitle>J. Geophys. Res</addtitle><description>Plagioclase, the most abundant mineral in many terrestrial and Martian igneous rocks, exhibits a range of compositions that reflects changing conditions during crystallization. Thermal emission spectrometers (TES, THEMIS, and Mini‐TES) on board Mars spacecraft provide a means of determining average plagioclase compositions directly. We demonstrate that spectrally modeled average plagioclase compositions in terrestrial basalts, andesites, and dacites correspond to measured values to within +10/−6 An (molar [Ca/(Ca + Na)] × 100) of weighted average values and +13/−14 An of normative compositions. Analyses of spectra from two‐component plagioclase mixtures (varied by volume and composition) provide additional insight into potential effects of plagioclase zoning. Considering the variability in types of observed plagioclase zoning patterns in terrestrial volcanic rocks, normal zoning (calcic cores and sodic rims) cannot be assumed and thus cannot account for an apparent “sodic bias” seen in previous spectrally modeled compositions. This bias is better explained by higher abundances of sodic groundmass plagioclase relative to calcic phenocrysts. Deconvolution modeling of laboratory spectra of physical mixtures (convolved to various instrument resolutions) predicts that TES, THEMIS, and Mini‐TES spectra may be used to extract plagioclase compositions to within +9/−12 An, +11/−12 An, and +8/12 An (respectively) of measured values in coarse sand plagioclase mixtures, with 1σ standard deviations of ±4 An for laboratory, TES, and Mini‐TES resolutions and ±6 An for THEMIS resolution.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Gusev</subject><subject>MER rover</subject><subject>MOC</subject><subject>MOLA</subject><subject>TES</subject><subject>THEMIS</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EEqvSGz_AFzgRGH_ETo5ltd1StUVCII7WZNaGgLMOdlaw_x6jrYATWLJ88PO8mnkZeyrgpQDZv5IA6noDIKG3D9hKitY0UoJ8yFYgdNeAlPYxOy_lC9SjW6NBrBheEB0y0pGnwOeIn8ZEEYvnlKY5lXEZ077wkNPEIw4p45LykeN-x28xF15mJE8Zw8KXzz5PGLmfxlKqVf88LRmfsEcBY_Hn9-8Z-3C5eb--am7ebt-sL24a1MbqRoVeDLrbDSYIgF0gHxQQDD0oqteSJiAvgumkHLAfBmpBGdUJkrIn2asz9vyUO-f07eDL4uog5GPEvU-H4mQHpi5u_guKCgoj2gq-OIGUUynZBzfnccJ8dALcr87d351X_Nl9LhbCGDLuaSx_nNb2SmmonDxx38foj__MdNfbdxthla5Sc5LGsvgfvyXMX52xyrbu493W3Vq51q_vrpxSPwEm_J6u</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Milam, Keith A.</creator><creator>McSween Jr, Harry Y.</creator><creator>Hamilton, Victoria E.</creator><creator>Moersch, Jeffrey M.</creator><creator>Christensen, Philip R.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200404</creationdate><title>Accuracy of plagioclase compositions from laboratory and Mars spacecraft thermal emission spectra</title><author>Milam, Keith A. ; McSween Jr, Harry Y. ; Hamilton, Victoria E. ; Moersch, Jeffrey M. ; Christensen, Philip R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4674-3f91b48db6f100dfcef30c0b903c9037c4c0ce1f6822ba9bbc5036381c229c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Gusev</topic><topic>MER rover</topic><topic>MOC</topic><topic>MOLA</topic><topic>TES</topic><topic>THEMIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milam, Keith A.</creatorcontrib><creatorcontrib>McSween Jr, Harry Y.</creatorcontrib><creatorcontrib>Hamilton, Victoria E.</creatorcontrib><creatorcontrib>Moersch, Jeffrey M.</creatorcontrib><creatorcontrib>Christensen, Philip R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. E. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milam, Keith A.</au><au>McSween Jr, Harry Y.</au><au>Hamilton, Victoria E.</au><au>Moersch, Jeffrey M.</au><au>Christensen, Philip R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy of plagioclase compositions from laboratory and Mars spacecraft thermal emission spectra</atitle><jtitle>Journal of Geophysical Research. E. Planets</jtitle><addtitle>J. Geophys. Res</addtitle><date>2004-04</date><risdate>2004</risdate><volume>109</volume><issue>E4</issue><spage>E04001</spage><epage>n/a</epage><pages>E04001-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Plagioclase, the most abundant mineral in many terrestrial and Martian igneous rocks, exhibits a range of compositions that reflects changing conditions during crystallization. Thermal emission spectrometers (TES, THEMIS, and Mini‐TES) on board Mars spacecraft provide a means of determining average plagioclase compositions directly. We demonstrate that spectrally modeled average plagioclase compositions in terrestrial basalts, andesites, and dacites correspond to measured values to within +10/−6 An (molar [Ca/(Ca + Na)] × 100) of weighted average values and +13/−14 An of normative compositions. Analyses of spectra from two‐component plagioclase mixtures (varied by volume and composition) provide additional insight into potential effects of plagioclase zoning. Considering the variability in types of observed plagioclase zoning patterns in terrestrial volcanic rocks, normal zoning (calcic cores and sodic rims) cannot be assumed and thus cannot account for an apparent “sodic bias” seen in previous spectrally modeled compositions. This bias is better explained by higher abundances of sodic groundmass plagioclase relative to calcic phenocrysts. Deconvolution modeling of laboratory spectra of physical mixtures (convolved to various instrument resolutions) predicts that TES, THEMIS, and Mini‐TES spectra may be used to extract plagioclase compositions to within +9/−12 An, +11/−12 An, and +8/12 An (respectively) of measured values in coarse sand plagioclase mixtures, with 1σ standard deviations of ±4 An for laboratory, TES, and Mini‐TES resolutions and ±6 An for THEMIS resolution.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2003JE002097</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. E. Planets, 2004-04, Vol.109 (E4), p.E04001-n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_28060006
source Wiley Online Library; Wiley-Blackwell AGU Digital Archive; Alma/SFX Local Collection
subjects Earth, ocean, space
Exact sciences and technology
Gusev
MER rover
MOC
MOLA
TES
THEMIS
title Accuracy of plagioclase compositions from laboratory and Mars spacecraft thermal emission spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20of%20plagioclase%20compositions%20from%20laboratory%20and%20Mars%20spacecraft%20thermal%20emission%20spectra&rft.jtitle=Journal%20of%20Geophysical%20Research.%20E.%20Planets&rft.au=Milam,%20Keith%20A.&rft.date=2004-04&rft.volume=109&rft.issue=E4&rft.spage=E04001&rft.epage=n/a&rft.pages=E04001-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2003JE002097&rft_dat=%3Cproquest_cross%3E28060006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18061615&rft_id=info:pmid/&rfr_iscdi=true