Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst

Formaldehyde (HCHO) is a typical air pollutant that severely endangers human health. The Cu–Mn spinel-structure catalyst exhibits good catalytic oxidation activity for HCHO removal. Theoretical calculation study of density functional theory (DFT) was performed to provide an atomic-scale understandin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2023-07, Vol.330, p.138754-138754, Article 138754
Hauptverfasser: Zhao, Liming, Yang, Yingju, Liu, Jing, Ding, Junyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138754
container_issue
container_start_page 138754
container_title Chemosphere (Oxford)
container_volume 330
creator Zhao, Liming
Yang, Yingju
Liu, Jing
Ding, Junyan
description Formaldehyde (HCHO) is a typical air pollutant that severely endangers human health. The Cu–Mn spinel-structure catalyst exhibits good catalytic oxidation activity for HCHO removal. Theoretical calculation study of density functional theory (DFT) was performed to provide an atomic-scale understanding for the oxidation mechanism of HCHO over CuMn2O4 surface. The results indicate that the (110) surface containing alternating three-coordinated Cu atom and three-coordinated Mn atom is more active for HCHO and O2 adsorption than the (100) surface. The Mars-van-Krevelen mechanism is dominant for HCHO catalytic oxidation. This reaction pathway of MvK mechanism includes HCHO adsorption and dehydrogenation dissociation, CO2 formation and desorption, O2 adsorption, H2O formation and surface restoration. In the complete catalytic cycle of HCHO oxidation, the second dehydrogenation (CHO* → CO* + H*) shows the highest energy barrier and is recognized as the rate-limiting step. The relationship of temperature and reaction rate constant is found to be positive by the kinetic analysis. The minimum activation energy of the MvK mechanism via the direct dehydrogenation pathway is 1.29 eV. This theoretical work provides an insight into the catalytic mechanism of HCHO oxidation over CuMn2O4 spinel. [Display omitted] •HCHO oxidation mechanism over CuMn2O4 catalyst was studied by quantum chemistry.•The (110) surface is more active for reactants adsorption than the (100) surface.•The lattice oxygen is catalytically active for HCHO oxidation.•Direct dehydrogenation pathway is dominant to the HCHO oxidation.
doi_str_mv 10.1016/j.chemosphere.2023.138754
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805517086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653523010214</els_id><sourcerecordid>2805517086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-67c611ea9e3c40fb37cdec3b09fa325365f51c9b215cb65b12353f8b9d75821a3</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EoqXwCijcuKT4p46TI4qAVqrUC5wtx9lQV3Ec7BTRt8dVCuLIaaXRzO7Oh9AdwXOCSfawm-stWBf6LXiYU0zZnLBc8MUZmpJcFCmhRX6OphgveJpxxifoKoQdxjHMi0s0YQLnOcVsilabL1OrwbgusaC3qjPBJq5JluVyk0RRu74Hn1rVvasOAkTB9i6YARIXkxASrQbVHsJwjS4a1Qa4Oc0Zent-ei2X6Xrzsiof16lmQgxpJnRGCKgCmF7gpmJC16BZhYtGMcpZxhtOdFFRwnWV8YpQxlmTV0UteE6JYjN0P-7tvfvYQxikNUFD28b_3D5ImmPOSSyYRWsxWrV3IXhoZO-NVf4gCZZHknIn_5CUR5JyJBmzt6cz-8pC_Zv8QRcN5WiAWPbTgJdBG-g01MaDHmTtzD_OfANbTIqx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805517086</pqid></control><display><type>article</type><title>Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhao, Liming ; Yang, Yingju ; Liu, Jing ; Ding, Junyan</creator><creatorcontrib>Zhao, Liming ; Yang, Yingju ; Liu, Jing ; Ding, Junyan</creatorcontrib><description>Formaldehyde (HCHO) is a typical air pollutant that severely endangers human health. The Cu–Mn spinel-structure catalyst exhibits good catalytic oxidation activity for HCHO removal. Theoretical calculation study of density functional theory (DFT) was performed to provide an atomic-scale understanding for the oxidation mechanism of HCHO over CuMn2O4 surface. The results indicate that the (110) surface containing alternating three-coordinated Cu atom and three-coordinated Mn atom is more active for HCHO and O2 adsorption than the (100) surface. The Mars-van-Krevelen mechanism is dominant for HCHO catalytic oxidation. This reaction pathway of MvK mechanism includes HCHO adsorption and dehydrogenation dissociation, CO2 formation and desorption, O2 adsorption, H2O formation and surface restoration. In the complete catalytic cycle of HCHO oxidation, the second dehydrogenation (CHO* → CO* + H*) shows the highest energy barrier and is recognized as the rate-limiting step. The relationship of temperature and reaction rate constant is found to be positive by the kinetic analysis. The minimum activation energy of the MvK mechanism via the direct dehydrogenation pathway is 1.29 eV. This theoretical work provides an insight into the catalytic mechanism of HCHO oxidation over CuMn2O4 spinel. [Display omitted] •HCHO oxidation mechanism over CuMn2O4 catalyst was studied by quantum chemistry.•The (110) surface is more active for reactants adsorption than the (100) surface.•The lattice oxygen is catalytically active for HCHO oxidation.•Direct dehydrogenation pathway is dominant to the HCHO oxidation.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2023.138754</identifier><identifier>PMID: 37088203</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Catalysis ; Copper - chemistry ; Cu–Mn spinel ; Density functional theory ; Formaldehyde oxidation ; Humans ; Kinetics ; Manganese ; Oxides - chemistry ; Reaction mechanism</subject><ispartof>Chemosphere (Oxford), 2023-07, Vol.330, p.138754-138754, Article 138754</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-67c611ea9e3c40fb37cdec3b09fa325365f51c9b215cb65b12353f8b9d75821a3</citedby><cites>FETCH-LOGICAL-c377t-67c611ea9e3c40fb37cdec3b09fa325365f51c9b215cb65b12353f8b9d75821a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2023.138754$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37088203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Liming</creatorcontrib><creatorcontrib>Yang, Yingju</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Ding, Junyan</creatorcontrib><title>Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>Formaldehyde (HCHO) is a typical air pollutant that severely endangers human health. The Cu–Mn spinel-structure catalyst exhibits good catalytic oxidation activity for HCHO removal. Theoretical calculation study of density functional theory (DFT) was performed to provide an atomic-scale understanding for the oxidation mechanism of HCHO over CuMn2O4 surface. The results indicate that the (110) surface containing alternating three-coordinated Cu atom and three-coordinated Mn atom is more active for HCHO and O2 adsorption than the (100) surface. The Mars-van-Krevelen mechanism is dominant for HCHO catalytic oxidation. This reaction pathway of MvK mechanism includes HCHO adsorption and dehydrogenation dissociation, CO2 formation and desorption, O2 adsorption, H2O formation and surface restoration. In the complete catalytic cycle of HCHO oxidation, the second dehydrogenation (CHO* → CO* + H*) shows the highest energy barrier and is recognized as the rate-limiting step. The relationship of temperature and reaction rate constant is found to be positive by the kinetic analysis. The minimum activation energy of the MvK mechanism via the direct dehydrogenation pathway is 1.29 eV. This theoretical work provides an insight into the catalytic mechanism of HCHO oxidation over CuMn2O4 spinel. [Display omitted] •HCHO oxidation mechanism over CuMn2O4 catalyst was studied by quantum chemistry.•The (110) surface is more active for reactants adsorption than the (100) surface.•The lattice oxygen is catalytically active for HCHO oxidation.•Direct dehydrogenation pathway is dominant to the HCHO oxidation.</description><subject>Catalysis</subject><subject>Copper - chemistry</subject><subject>Cu–Mn spinel</subject><subject>Density functional theory</subject><subject>Formaldehyde oxidation</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Manganese</subject><subject>Oxides - chemistry</subject><subject>Reaction mechanism</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1OwzAQhC0EoqXwCijcuKT4p46TI4qAVqrUC5wtx9lQV3Ec7BTRt8dVCuLIaaXRzO7Oh9AdwXOCSfawm-stWBf6LXiYU0zZnLBc8MUZmpJcFCmhRX6OphgveJpxxifoKoQdxjHMi0s0YQLnOcVsilabL1OrwbgusaC3qjPBJq5JluVyk0RRu74Hn1rVvasOAkTB9i6YARIXkxASrQbVHsJwjS4a1Qa4Oc0Zent-ei2X6Xrzsiof16lmQgxpJnRGCKgCmF7gpmJC16BZhYtGMcpZxhtOdFFRwnWV8YpQxlmTV0UteE6JYjN0P-7tvfvYQxikNUFD28b_3D5ImmPOSSyYRWsxWrV3IXhoZO-NVf4gCZZHknIn_5CUR5JyJBmzt6cz-8pC_Zv8QRcN5WiAWPbTgJdBG-g01MaDHmTtzD_OfANbTIqx</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Zhao, Liming</creator><creator>Yang, Yingju</creator><creator>Liu, Jing</creator><creator>Ding, Junyan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202307</creationdate><title>Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst</title><author>Zhao, Liming ; Yang, Yingju ; Liu, Jing ; Ding, Junyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-67c611ea9e3c40fb37cdec3b09fa325365f51c9b215cb65b12353f8b9d75821a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysis</topic><topic>Copper - chemistry</topic><topic>Cu–Mn spinel</topic><topic>Density functional theory</topic><topic>Formaldehyde oxidation</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Manganese</topic><topic>Oxides - chemistry</topic><topic>Reaction mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Liming</creatorcontrib><creatorcontrib>Yang, Yingju</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Ding, Junyan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Liming</au><au>Yang, Yingju</au><au>Liu, Jing</au><au>Ding, Junyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2023-07</date><risdate>2023</risdate><volume>330</volume><spage>138754</spage><epage>138754</epage><pages>138754-138754</pages><artnum>138754</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>Formaldehyde (HCHO) is a typical air pollutant that severely endangers human health. The Cu–Mn spinel-structure catalyst exhibits good catalytic oxidation activity for HCHO removal. Theoretical calculation study of density functional theory (DFT) was performed to provide an atomic-scale understanding for the oxidation mechanism of HCHO over CuMn2O4 surface. The results indicate that the (110) surface containing alternating three-coordinated Cu atom and three-coordinated Mn atom is more active for HCHO and O2 adsorption than the (100) surface. The Mars-van-Krevelen mechanism is dominant for HCHO catalytic oxidation. This reaction pathway of MvK mechanism includes HCHO adsorption and dehydrogenation dissociation, CO2 formation and desorption, O2 adsorption, H2O formation and surface restoration. In the complete catalytic cycle of HCHO oxidation, the second dehydrogenation (CHO* → CO* + H*) shows the highest energy barrier and is recognized as the rate-limiting step. The relationship of temperature and reaction rate constant is found to be positive by the kinetic analysis. The minimum activation energy of the MvK mechanism via the direct dehydrogenation pathway is 1.29 eV. This theoretical work provides an insight into the catalytic mechanism of HCHO oxidation over CuMn2O4 spinel. [Display omitted] •HCHO oxidation mechanism over CuMn2O4 catalyst was studied by quantum chemistry.•The (110) surface is more active for reactants adsorption than the (100) surface.•The lattice oxygen is catalytically active for HCHO oxidation.•Direct dehydrogenation pathway is dominant to the HCHO oxidation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37088203</pmid><doi>10.1016/j.chemosphere.2023.138754</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2023-07, Vol.330, p.138754-138754, Article 138754
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_2805517086
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Catalysis
Copper - chemistry
Cu–Mn spinel
Density functional theory
Formaldehyde oxidation
Humans
Kinetics
Manganese
Oxides - chemistry
Reaction mechanism
title Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20mechanism%20of%20HCHO%20on%20copper-manganese%20composite%20oxides%20catalyst&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Zhao,%20Liming&rft.date=2023-07&rft.volume=330&rft.spage=138754&rft.epage=138754&rft.pages=138754-138754&rft.artnum=138754&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2023.138754&rft_dat=%3Cproquest_cross%3E2805517086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805517086&rft_id=info:pmid/37088203&rft_els_id=S0045653523010214&rfr_iscdi=true