Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst
Formaldehyde (HCHO) is a typical air pollutant that severely endangers human health. The Cu–Mn spinel-structure catalyst exhibits good catalytic oxidation activity for HCHO removal. Theoretical calculation study of density functional theory (DFT) was performed to provide an atomic-scale understandin...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2023-07, Vol.330, p.138754-138754, Article 138754 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138754 |
---|---|
container_issue | |
container_start_page | 138754 |
container_title | Chemosphere (Oxford) |
container_volume | 330 |
creator | Zhao, Liming Yang, Yingju Liu, Jing Ding, Junyan |
description | Formaldehyde (HCHO) is a typical air pollutant that severely endangers human health. The Cu–Mn spinel-structure catalyst exhibits good catalytic oxidation activity for HCHO removal. Theoretical calculation study of density functional theory (DFT) was performed to provide an atomic-scale understanding for the oxidation mechanism of HCHO over CuMn2O4 surface. The results indicate that the (110) surface containing alternating three-coordinated Cu atom and three-coordinated Mn atom is more active for HCHO and O2 adsorption than the (100) surface. The Mars-van-Krevelen mechanism is dominant for HCHO catalytic oxidation. This reaction pathway of MvK mechanism includes HCHO adsorption and dehydrogenation dissociation, CO2 formation and desorption, O2 adsorption, H2O formation and surface restoration. In the complete catalytic cycle of HCHO oxidation, the second dehydrogenation (CHO* → CO* + H*) shows the highest energy barrier and is recognized as the rate-limiting step. The relationship of temperature and reaction rate constant is found to be positive by the kinetic analysis. The minimum activation energy of the MvK mechanism via the direct dehydrogenation pathway is 1.29 eV. This theoretical work provides an insight into the catalytic mechanism of HCHO oxidation over CuMn2O4 spinel.
[Display omitted]
•HCHO oxidation mechanism over CuMn2O4 catalyst was studied by quantum chemistry.•The (110) surface is more active for reactants adsorption than the (100) surface.•The lattice oxygen is catalytically active for HCHO oxidation.•Direct dehydrogenation pathway is dominant to the HCHO oxidation. |
doi_str_mv | 10.1016/j.chemosphere.2023.138754 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805517086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653523010214</els_id><sourcerecordid>2805517086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-67c611ea9e3c40fb37cdec3b09fa325365f51c9b215cb65b12353f8b9d75821a3</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EoqXwCijcuKT4p46TI4qAVqrUC5wtx9lQV3Ec7BTRt8dVCuLIaaXRzO7Oh9AdwXOCSfawm-stWBf6LXiYU0zZnLBc8MUZmpJcFCmhRX6OphgveJpxxifoKoQdxjHMi0s0YQLnOcVsilabL1OrwbgusaC3qjPBJq5JluVyk0RRu74Hn1rVvasOAkTB9i6YARIXkxASrQbVHsJwjS4a1Qa4Oc0Zent-ei2X6Xrzsiof16lmQgxpJnRGCKgCmF7gpmJC16BZhYtGMcpZxhtOdFFRwnWV8YpQxlmTV0UteE6JYjN0P-7tvfvYQxikNUFD28b_3D5ImmPOSSyYRWsxWrV3IXhoZO-NVf4gCZZHknIn_5CUR5JyJBmzt6cz-8pC_Zv8QRcN5WiAWPbTgJdBG-g01MaDHmTtzD_OfANbTIqx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805517086</pqid></control><display><type>article</type><title>Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhao, Liming ; Yang, Yingju ; Liu, Jing ; Ding, Junyan</creator><creatorcontrib>Zhao, Liming ; Yang, Yingju ; Liu, Jing ; Ding, Junyan</creatorcontrib><description>Formaldehyde (HCHO) is a typical air pollutant that severely endangers human health. The Cu–Mn spinel-structure catalyst exhibits good catalytic oxidation activity for HCHO removal. Theoretical calculation study of density functional theory (DFT) was performed to provide an atomic-scale understanding for the oxidation mechanism of HCHO over CuMn2O4 surface. The results indicate that the (110) surface containing alternating three-coordinated Cu atom and three-coordinated Mn atom is more active for HCHO and O2 adsorption than the (100) surface. The Mars-van-Krevelen mechanism is dominant for HCHO catalytic oxidation. This reaction pathway of MvK mechanism includes HCHO adsorption and dehydrogenation dissociation, CO2 formation and desorption, O2 adsorption, H2O formation and surface restoration. In the complete catalytic cycle of HCHO oxidation, the second dehydrogenation (CHO* → CO* + H*) shows the highest energy barrier and is recognized as the rate-limiting step. The relationship of temperature and reaction rate constant is found to be positive by the kinetic analysis. The minimum activation energy of the MvK mechanism via the direct dehydrogenation pathway is 1.29 eV. This theoretical work provides an insight into the catalytic mechanism of HCHO oxidation over CuMn2O4 spinel.
[Display omitted]
•HCHO oxidation mechanism over CuMn2O4 catalyst was studied by quantum chemistry.•The (110) surface is more active for reactants adsorption than the (100) surface.•The lattice oxygen is catalytically active for HCHO oxidation.•Direct dehydrogenation pathway is dominant to the HCHO oxidation.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2023.138754</identifier><identifier>PMID: 37088203</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Catalysis ; Copper - chemistry ; Cu–Mn spinel ; Density functional theory ; Formaldehyde oxidation ; Humans ; Kinetics ; Manganese ; Oxides - chemistry ; Reaction mechanism</subject><ispartof>Chemosphere (Oxford), 2023-07, Vol.330, p.138754-138754, Article 138754</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-67c611ea9e3c40fb37cdec3b09fa325365f51c9b215cb65b12353f8b9d75821a3</citedby><cites>FETCH-LOGICAL-c377t-67c611ea9e3c40fb37cdec3b09fa325365f51c9b215cb65b12353f8b9d75821a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2023.138754$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37088203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Liming</creatorcontrib><creatorcontrib>Yang, Yingju</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Ding, Junyan</creatorcontrib><title>Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>Formaldehyde (HCHO) is a typical air pollutant that severely endangers human health. The Cu–Mn spinel-structure catalyst exhibits good catalytic oxidation activity for HCHO removal. Theoretical calculation study of density functional theory (DFT) was performed to provide an atomic-scale understanding for the oxidation mechanism of HCHO over CuMn2O4 surface. The results indicate that the (110) surface containing alternating three-coordinated Cu atom and three-coordinated Mn atom is more active for HCHO and O2 adsorption than the (100) surface. The Mars-van-Krevelen mechanism is dominant for HCHO catalytic oxidation. This reaction pathway of MvK mechanism includes HCHO adsorption and dehydrogenation dissociation, CO2 formation and desorption, O2 adsorption, H2O formation and surface restoration. In the complete catalytic cycle of HCHO oxidation, the second dehydrogenation (CHO* → CO* + H*) shows the highest energy barrier and is recognized as the rate-limiting step. The relationship of temperature and reaction rate constant is found to be positive by the kinetic analysis. The minimum activation energy of the MvK mechanism via the direct dehydrogenation pathway is 1.29 eV. This theoretical work provides an insight into the catalytic mechanism of HCHO oxidation over CuMn2O4 spinel.
[Display omitted]
•HCHO oxidation mechanism over CuMn2O4 catalyst was studied by quantum chemistry.•The (110) surface is more active for reactants adsorption than the (100) surface.•The lattice oxygen is catalytically active for HCHO oxidation.•Direct dehydrogenation pathway is dominant to the HCHO oxidation.</description><subject>Catalysis</subject><subject>Copper - chemistry</subject><subject>Cu–Mn spinel</subject><subject>Density functional theory</subject><subject>Formaldehyde oxidation</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Manganese</subject><subject>Oxides - chemistry</subject><subject>Reaction mechanism</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1OwzAQhC0EoqXwCijcuKT4p46TI4qAVqrUC5wtx9lQV3Ec7BTRt8dVCuLIaaXRzO7Oh9AdwXOCSfawm-stWBf6LXiYU0zZnLBc8MUZmpJcFCmhRX6OphgveJpxxifoKoQdxjHMi0s0YQLnOcVsilabL1OrwbgusaC3qjPBJq5JluVyk0RRu74Hn1rVvasOAkTB9i6YARIXkxASrQbVHsJwjS4a1Qa4Oc0Zent-ei2X6Xrzsiof16lmQgxpJnRGCKgCmF7gpmJC16BZhYtGMcpZxhtOdFFRwnWV8YpQxlmTV0UteE6JYjN0P-7tvfvYQxikNUFD28b_3D5ImmPOSSyYRWsxWrV3IXhoZO-NVf4gCZZHknIn_5CUR5JyJBmzt6cz-8pC_Zv8QRcN5WiAWPbTgJdBG-g01MaDHmTtzD_OfANbTIqx</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Zhao, Liming</creator><creator>Yang, Yingju</creator><creator>Liu, Jing</creator><creator>Ding, Junyan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202307</creationdate><title>Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst</title><author>Zhao, Liming ; Yang, Yingju ; Liu, Jing ; Ding, Junyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-67c611ea9e3c40fb37cdec3b09fa325365f51c9b215cb65b12353f8b9d75821a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysis</topic><topic>Copper - chemistry</topic><topic>Cu–Mn spinel</topic><topic>Density functional theory</topic><topic>Formaldehyde oxidation</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Manganese</topic><topic>Oxides - chemistry</topic><topic>Reaction mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Liming</creatorcontrib><creatorcontrib>Yang, Yingju</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Ding, Junyan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Liming</au><au>Yang, Yingju</au><au>Liu, Jing</au><au>Ding, Junyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2023-07</date><risdate>2023</risdate><volume>330</volume><spage>138754</spage><epage>138754</epage><pages>138754-138754</pages><artnum>138754</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>Formaldehyde (HCHO) is a typical air pollutant that severely endangers human health. The Cu–Mn spinel-structure catalyst exhibits good catalytic oxidation activity for HCHO removal. Theoretical calculation study of density functional theory (DFT) was performed to provide an atomic-scale understanding for the oxidation mechanism of HCHO over CuMn2O4 surface. The results indicate that the (110) surface containing alternating three-coordinated Cu atom and three-coordinated Mn atom is more active for HCHO and O2 adsorption than the (100) surface. The Mars-van-Krevelen mechanism is dominant for HCHO catalytic oxidation. This reaction pathway of MvK mechanism includes HCHO adsorption and dehydrogenation dissociation, CO2 formation and desorption, O2 adsorption, H2O formation and surface restoration. In the complete catalytic cycle of HCHO oxidation, the second dehydrogenation (CHO* → CO* + H*) shows the highest energy barrier and is recognized as the rate-limiting step. The relationship of temperature and reaction rate constant is found to be positive by the kinetic analysis. The minimum activation energy of the MvK mechanism via the direct dehydrogenation pathway is 1.29 eV. This theoretical work provides an insight into the catalytic mechanism of HCHO oxidation over CuMn2O4 spinel.
[Display omitted]
•HCHO oxidation mechanism over CuMn2O4 catalyst was studied by quantum chemistry.•The (110) surface is more active for reactants adsorption than the (100) surface.•The lattice oxygen is catalytically active for HCHO oxidation.•Direct dehydrogenation pathway is dominant to the HCHO oxidation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37088203</pmid><doi>10.1016/j.chemosphere.2023.138754</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2023-07, Vol.330, p.138754-138754, Article 138754 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_2805517086 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Catalysis Copper - chemistry Cu–Mn spinel Density functional theory Formaldehyde oxidation Humans Kinetics Manganese Oxides - chemistry Reaction mechanism |
title | Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20mechanism%20of%20HCHO%20on%20copper-manganese%20composite%20oxides%20catalyst&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Zhao,%20Liming&rft.date=2023-07&rft.volume=330&rft.spage=138754&rft.epage=138754&rft.pages=138754-138754&rft.artnum=138754&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2023.138754&rft_dat=%3Cproquest_cross%3E2805517086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805517086&rft_id=info:pmid/37088203&rft_els_id=S0045653523010214&rfr_iscdi=true |