Interfacial Interaction of Multifunctional GQDs Reinforcing Polymer Electrolytes For All‐Solid‐State Li Battery

Solid‐state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, grap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-08, Vol.19 (33), p.e2301275-n/a
Hauptverfasser: Liu, Huaxin, Xu, Laiqiang, Tu, Hanyu, Luo, Zheng, Zhu, Fangjun, Deng, Wentao, Zou, Guoqiang, Hou, Hongshuai, Ji, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page e2301275
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Liu, Huaxin
Xu, Laiqiang
Tu, Hanyu
Luo, Zheng
Zhu, Fangjun
Deng, Wentao
Zou, Guoqiang
Hou, Hongshuai
Ji, Xiaobo
description Solid‐state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+, GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid‐state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability. Graphene quantum dots have many excellent properties. Here, graphene quantum dots are employed as additives to PEO‐based polymer solid electrolytes, which improve the performance of composite electrolytes in multiaspect. The assembled solid‐state battery has enhanced cycle stability and improved rate performance.
doi_str_mv 10.1002/smll.202301275
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805033955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805033955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-97ca4a5dc32ed28b35b3fb6bbebe4ae8fabbebc12dc9e5c0e116022ca6256d513</originalsourceid><addsrcrecordid>eNqFkbtOxDAQRS0E4t1SIks0NLv4EedRwgLLSkG868hxJsjIicF2hLbjE_hGvoSEhUWioZprz_EdeS5Ce5SMKSHsyDfGjBlhnFCWiBW0SWPKR3HKstWlpmQDbXn_RAinLErW0QZPSEp5Em8iP2sDuFoqLQ3-0lIFbVtsa3zZmaDrrv266NvTm1OPb0G3tXVKt4_42pp5Aw6fGVDB9YcAHp9bh4-N-Xh7v7NGV0MNMgDONT6RoR8w30FrtTQedr_rNno4P7ufXIzyq-lscpyPFE-4GGWJkpEUleIMKpaWXJS8LuOyhBIiCWktB6koq1QGQhGgNCaMKRkzEVeC8m10uPB9dvalAx-KRnsFxsgWbOcLlhJBOM-E6NGDP-iT7Vz_6YESNIqSmLOeGi8o5az3Duri2elGunlBSTHEUQxxFMs4-gf737Zd2UC1xH_23wPZAnjVBub_2BV3l3n-a_4JfXCa1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851447632</pqid></control><display><type>article</type><title>Interfacial Interaction of Multifunctional GQDs Reinforcing Polymer Electrolytes For All‐Solid‐State Li Battery</title><source>Access via Wiley Online Library</source><creator>Liu, Huaxin ; Xu, Laiqiang ; Tu, Hanyu ; Luo, Zheng ; Zhu, Fangjun ; Deng, Wentao ; Zou, Guoqiang ; Hou, Hongshuai ; Ji, Xiaobo</creator><creatorcontrib>Liu, Huaxin ; Xu, Laiqiang ; Tu, Hanyu ; Luo, Zheng ; Zhu, Fangjun ; Deng, Wentao ; Zou, Guoqiang ; Hou, Hongshuai ; Ji, Xiaobo</creatorcontrib><description>Solid‐state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+, GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid‐state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability. Graphene quantum dots have many excellent properties. Here, graphene quantum dots are employed as additives to PEO‐based polymer solid electrolytes, which improve the performance of composite electrolytes in multiaspect. The assembled solid‐state battery has enhanced cycle stability and improved rate performance.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202301275</identifier><identifier>PMID: 37081376</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>composite polymer electrolytes ; Electrolytes ; Ethylene oxide ; Graphene ; graphene quantum dots ; Hydroxyl groups ; Interface stability ; Ion currents ; ion transport ; Ions ; Lewis base ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Mechanical properties ; Molten salt electrolytes ; Nanotechnology ; Polymers ; Quantum dots ; Rechargeable batteries ; Room temperature ; Solid electrolytes ; solid state lithium batteries</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-08, Vol.19 (33), p.e2301275-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-97ca4a5dc32ed28b35b3fb6bbebe4ae8fabbebc12dc9e5c0e116022ca6256d513</citedby><cites>FETCH-LOGICAL-c3735-97ca4a5dc32ed28b35b3fb6bbebe4ae8fabbebc12dc9e5c0e116022ca6256d513</cites><orcidid>0000-0002-5405-7913 ; 0000-0001-8201-4614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202301275$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202301275$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37081376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Huaxin</creatorcontrib><creatorcontrib>Xu, Laiqiang</creatorcontrib><creatorcontrib>Tu, Hanyu</creatorcontrib><creatorcontrib>Luo, Zheng</creatorcontrib><creatorcontrib>Zhu, Fangjun</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><title>Interfacial Interaction of Multifunctional GQDs Reinforcing Polymer Electrolytes For All‐Solid‐State Li Battery</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Solid‐state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+, GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid‐state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability. Graphene quantum dots have many excellent properties. Here, graphene quantum dots are employed as additives to PEO‐based polymer solid electrolytes, which improve the performance of composite electrolytes in multiaspect. The assembled solid‐state battery has enhanced cycle stability and improved rate performance.</description><subject>composite polymer electrolytes</subject><subject>Electrolytes</subject><subject>Ethylene oxide</subject><subject>Graphene</subject><subject>graphene quantum dots</subject><subject>Hydroxyl groups</subject><subject>Interface stability</subject><subject>Ion currents</subject><subject>ion transport</subject><subject>Ions</subject><subject>Lewis base</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Mechanical properties</subject><subject>Molten salt electrolytes</subject><subject>Nanotechnology</subject><subject>Polymers</subject><subject>Quantum dots</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>solid state lithium batteries</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOxDAQRS0E4t1SIks0NLv4EedRwgLLSkG868hxJsjIicF2hLbjE_hGvoSEhUWioZprz_EdeS5Ce5SMKSHsyDfGjBlhnFCWiBW0SWPKR3HKstWlpmQDbXn_RAinLErW0QZPSEp5Em8iP2sDuFoqLQ3-0lIFbVtsa3zZmaDrrv266NvTm1OPb0G3tXVKt4_42pp5Aw6fGVDB9YcAHp9bh4-N-Xh7v7NGV0MNMgDONT6RoR8w30FrtTQedr_rNno4P7ufXIzyq-lscpyPFE-4GGWJkpEUleIMKpaWXJS8LuOyhBIiCWktB6koq1QGQhGgNCaMKRkzEVeC8m10uPB9dvalAx-KRnsFxsgWbOcLlhJBOM-E6NGDP-iT7Vz_6YESNIqSmLOeGi8o5az3Duri2elGunlBSTHEUQxxFMs4-gf737Zd2UC1xH_23wPZAnjVBub_2BV3l3n-a_4JfXCa1w</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Liu, Huaxin</creator><creator>Xu, Laiqiang</creator><creator>Tu, Hanyu</creator><creator>Luo, Zheng</creator><creator>Zhu, Fangjun</creator><creator>Deng, Wentao</creator><creator>Zou, Guoqiang</creator><creator>Hou, Hongshuai</creator><creator>Ji, Xiaobo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5405-7913</orcidid><orcidid>https://orcid.org/0000-0001-8201-4614</orcidid></search><sort><creationdate>20230801</creationdate><title>Interfacial Interaction of Multifunctional GQDs Reinforcing Polymer Electrolytes For All‐Solid‐State Li Battery</title><author>Liu, Huaxin ; Xu, Laiqiang ; Tu, Hanyu ; Luo, Zheng ; Zhu, Fangjun ; Deng, Wentao ; Zou, Guoqiang ; Hou, Hongshuai ; Ji, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-97ca4a5dc32ed28b35b3fb6bbebe4ae8fabbebc12dc9e5c0e116022ca6256d513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>composite polymer electrolytes</topic><topic>Electrolytes</topic><topic>Ethylene oxide</topic><topic>Graphene</topic><topic>graphene quantum dots</topic><topic>Hydroxyl groups</topic><topic>Interface stability</topic><topic>Ion currents</topic><topic>ion transport</topic><topic>Ions</topic><topic>Lewis base</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Mechanical properties</topic><topic>Molten salt electrolytes</topic><topic>Nanotechnology</topic><topic>Polymers</topic><topic>Quantum dots</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>solid state lithium batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Huaxin</creatorcontrib><creatorcontrib>Xu, Laiqiang</creatorcontrib><creatorcontrib>Tu, Hanyu</creatorcontrib><creatorcontrib>Luo, Zheng</creatorcontrib><creatorcontrib>Zhu, Fangjun</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Huaxin</au><au>Xu, Laiqiang</au><au>Tu, Hanyu</au><au>Luo, Zheng</au><au>Zhu, Fangjun</au><au>Deng, Wentao</au><au>Zou, Guoqiang</au><au>Hou, Hongshuai</au><au>Ji, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Interaction of Multifunctional GQDs Reinforcing Polymer Electrolytes For All‐Solid‐State Li Battery</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>33</issue><spage>e2301275</spage><epage>n/a</epage><pages>e2301275-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Solid‐state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+, GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid‐state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability. Graphene quantum dots have many excellent properties. Here, graphene quantum dots are employed as additives to PEO‐based polymer solid electrolytes, which improve the performance of composite electrolytes in multiaspect. The assembled solid‐state battery has enhanced cycle stability and improved rate performance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37081376</pmid><doi>10.1002/smll.202301275</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5405-7913</orcidid><orcidid>https://orcid.org/0000-0001-8201-4614</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-08, Vol.19 (33), p.e2301275-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2805033955
source Access via Wiley Online Library
subjects composite polymer electrolytes
Electrolytes
Ethylene oxide
Graphene
graphene quantum dots
Hydroxyl groups
Interface stability
Ion currents
ion transport
Ions
Lewis base
Lithium
Lithium batteries
Lithium-ion batteries
Mechanical properties
Molten salt electrolytes
Nanotechnology
Polymers
Quantum dots
Rechargeable batteries
Room temperature
Solid electrolytes
solid state lithium batteries
title Interfacial Interaction of Multifunctional GQDs Reinforcing Polymer Electrolytes For All‐Solid‐State Li Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Interaction%20of%20Multifunctional%20GQDs%20Reinforcing%20Polymer%20Electrolytes%20For%20All%E2%80%90Solid%E2%80%90State%20Li%20Battery&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liu,%20Huaxin&rft.date=2023-08-01&rft.volume=19&rft.issue=33&rft.spage=e2301275&rft.epage=n/a&rft.pages=e2301275-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202301275&rft_dat=%3Cproquest_cross%3E2805033955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851447632&rft_id=info:pmid/37081376&rfr_iscdi=true