Efficient bio-cementation between silicate tailings and biogenic calcium carbonate: Nano-scale structure and mechanism of the interface

Biogenic calcium carbonate (bio-CaCO3) cementing tailings is an efficient technology to immobilize heavy metals in waste tailings. However, the underlying mechanism of interface cementation has not yet been clearly established, which limits the technological development. In this study, we used advan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2023-09, Vol.332, p.121665-121665, Article 121665
Hauptverfasser: He, Zhanfei, Xu, Yiting, Yang, Yingli, Zhu, Pengfeng, Jin, Zhengzhong, Zhang, Daoyong, Pan, Xiangliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121665
container_issue
container_start_page 121665
container_title Environmental pollution (1987)
container_volume 332
creator He, Zhanfei
Xu, Yiting
Yang, Yingli
Zhu, Pengfeng
Jin, Zhengzhong
Zhang, Daoyong
Pan, Xiangliang
description Biogenic calcium carbonate (bio-CaCO3) cementing tailings is an efficient technology to immobilize heavy metals in waste tailings. However, the underlying mechanism of interface cementation has not yet been clearly established, which limits the technological development. In this study, we used advanced techniques, including atomic force microscopy-based Lorentz contact resonance (AFM-LCR) spectroscopy, AFM-based nanoscale infrared (AFM-IR) spectroscopy, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy, to reveal the structural, mechanical, and chemical properties of the interface on the nanoscale. Ureolytic bacteria produced bio-CaCO3 to fill in pore space and to bind cement tailings particles, which prevented the formation of leachate containing heavy metals. After cementation, a strong 40–300 nm thin interface was formed between the taillings and bio-CaCO3 particles. Unlike chemically synthesized CaCO3, bio-CaCO3 is strongly negatively charged, which gives it better adhesion ability. Fourier transform infrared (FTIR), AFM-IR, and 29Si ssNMR spectra indicated that the Si–OH and Si–O–Si groups on the silicate surface were converted to deprotonated silanol groups (≡Si–O-) at a high pH and they formed strong chemical bonds of Si–O–Ca on the interface through a Ca ion bridge. In addition, hydrogen bonding with Si–OH also played a role at the cementation interface. These findings provide the nano-scale interfacial structure and mechanism of bio-CaCO3 cementing silicate tailings and accelerate the development of tailings disposal technology. [Display omitted] •Bio-CaCO3 cementing tailings is an efficient way to control heavy metal pollution in tailings.•An interface with greater mechanical strength was formed between the tailings and bio-CaCO3.•A strong chemical bond Si–O–Ca was an important chemical structure on the cemented interface.•Intermolecular forces and hydrogen bonding also played important roles during cementation.
doi_str_mv 10.1016/j.envpol.2023.121665
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805032278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026974912300667X</els_id><sourcerecordid>2805032278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ba035d41ad34025937180925cd49327e6188d9cd7f71668289880546fee7da33</originalsourceid><addsrcrecordid>eNp9kc1O3TAQha2KqtzSvkFVeckmt_5L7LBAQojSSqjdsLccewK-Suxb2wHxBH3t-jbAktWMNN-Z0ZyD0BdKtpTQ7ttuC-FhH6ctI4xvKaNd175DG6okbzrBxBHaENb1jRQ9PUYfc94RQgTn_AM65pIo0jKyQX-vxtFbD6HgwcfGwlxbU3wMeIDyCBBw9pO3pgAupnbhLmMT3IG-g-AttmayfplrTUMMlTvDv0yITa4DwLmkxZYlwX_RDPbeBJ9nHEdc7gH7UCCNxsIn9H40U4bPz_UE3X6_ur380dz8vv55eXHTWN6x0gyG8NYJahwXhLU9l1SRnrXWiZ4zCR1VyvXWyVFWPxRTvaqPim4EkM5wfoJO17X7FP8skIuefbYwTSZAXLJmlSacMakqKlbUpphzglHvk59NetKU6EMCeqfXBPQhAb0mUGVfny8swwzuVfRieQXOVwDqmw8eks4H_y04n8AW7aJ_-8I_Y2-aiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805032278</pqid></control><display><type>article</type><title>Efficient bio-cementation between silicate tailings and biogenic calcium carbonate: Nano-scale structure and mechanism of the interface</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>He, Zhanfei ; Xu, Yiting ; Yang, Yingli ; Zhu, Pengfeng ; Jin, Zhengzhong ; Zhang, Daoyong ; Pan, Xiangliang</creator><creatorcontrib>He, Zhanfei ; Xu, Yiting ; Yang, Yingli ; Zhu, Pengfeng ; Jin, Zhengzhong ; Zhang, Daoyong ; Pan, Xiangliang</creatorcontrib><description>Biogenic calcium carbonate (bio-CaCO3) cementing tailings is an efficient technology to immobilize heavy metals in waste tailings. However, the underlying mechanism of interface cementation has not yet been clearly established, which limits the technological development. In this study, we used advanced techniques, including atomic force microscopy-based Lorentz contact resonance (AFM-LCR) spectroscopy, AFM-based nanoscale infrared (AFM-IR) spectroscopy, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy, to reveal the structural, mechanical, and chemical properties of the interface on the nanoscale. Ureolytic bacteria produced bio-CaCO3 to fill in pore space and to bind cement tailings particles, which prevented the formation of leachate containing heavy metals. After cementation, a strong 40–300 nm thin interface was formed between the taillings and bio-CaCO3 particles. Unlike chemically synthesized CaCO3, bio-CaCO3 is strongly negatively charged, which gives it better adhesion ability. Fourier transform infrared (FTIR), AFM-IR, and 29Si ssNMR spectra indicated that the Si–OH and Si–O–Si groups on the silicate surface were converted to deprotonated silanol groups (≡Si–O-) at a high pH and they formed strong chemical bonds of Si–O–Ca on the interface through a Ca ion bridge. In addition, hydrogen bonding with Si–OH also played a role at the cementation interface. These findings provide the nano-scale interfacial structure and mechanism of bio-CaCO3 cementing silicate tailings and accelerate the development of tailings disposal technology. [Display omitted] •Bio-CaCO3 cementing tailings is an efficient way to control heavy metal pollution in tailings.•An interface with greater mechanical strength was formed between the tailings and bio-CaCO3.•A strong chemical bond Si–O–Ca was an important chemical structure on the cemented interface.•Intermolecular forces and hydrogen bonding also played important roles during cementation.</description><identifier>ISSN: 0269-7491</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2023.121665</identifier><identifier>PMID: 37080520</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biogenic calcium carbonate (bio-CaCO3) ; Biological cementation ; Calcium Carbonate - chemistry ; Cementation ; Heavy metals ; Interfacial mechanism ; Metals, Heavy ; Silicates - chemistry ; Tailings ; Ureolytic bacteria</subject><ispartof>Environmental pollution (1987), 2023-09, Vol.332, p.121665-121665, Article 121665</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ba035d41ad34025937180925cd49327e6188d9cd7f71668289880546fee7da33</citedby><cites>FETCH-LOGICAL-c362t-ba035d41ad34025937180925cd49327e6188d9cd7f71668289880546fee7da33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envpol.2023.121665$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37080520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Zhanfei</creatorcontrib><creatorcontrib>Xu, Yiting</creatorcontrib><creatorcontrib>Yang, Yingli</creatorcontrib><creatorcontrib>Zhu, Pengfeng</creatorcontrib><creatorcontrib>Jin, Zhengzhong</creatorcontrib><creatorcontrib>Zhang, Daoyong</creatorcontrib><creatorcontrib>Pan, Xiangliang</creatorcontrib><title>Efficient bio-cementation between silicate tailings and biogenic calcium carbonate: Nano-scale structure and mechanism of the interface</title><title>Environmental pollution (1987)</title><addtitle>Environ Pollut</addtitle><description>Biogenic calcium carbonate (bio-CaCO3) cementing tailings is an efficient technology to immobilize heavy metals in waste tailings. However, the underlying mechanism of interface cementation has not yet been clearly established, which limits the technological development. In this study, we used advanced techniques, including atomic force microscopy-based Lorentz contact resonance (AFM-LCR) spectroscopy, AFM-based nanoscale infrared (AFM-IR) spectroscopy, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy, to reveal the structural, mechanical, and chemical properties of the interface on the nanoscale. Ureolytic bacteria produced bio-CaCO3 to fill in pore space and to bind cement tailings particles, which prevented the formation of leachate containing heavy metals. After cementation, a strong 40–300 nm thin interface was formed between the taillings and bio-CaCO3 particles. Unlike chemically synthesized CaCO3, bio-CaCO3 is strongly negatively charged, which gives it better adhesion ability. Fourier transform infrared (FTIR), AFM-IR, and 29Si ssNMR spectra indicated that the Si–OH and Si–O–Si groups on the silicate surface were converted to deprotonated silanol groups (≡Si–O-) at a high pH and they formed strong chemical bonds of Si–O–Ca on the interface through a Ca ion bridge. In addition, hydrogen bonding with Si–OH also played a role at the cementation interface. These findings provide the nano-scale interfacial structure and mechanism of bio-CaCO3 cementing silicate tailings and accelerate the development of tailings disposal technology. [Display omitted] •Bio-CaCO3 cementing tailings is an efficient way to control heavy metal pollution in tailings.•An interface with greater mechanical strength was formed between the tailings and bio-CaCO3.•A strong chemical bond Si–O–Ca was an important chemical structure on the cemented interface.•Intermolecular forces and hydrogen bonding also played important roles during cementation.</description><subject>Biogenic calcium carbonate (bio-CaCO3)</subject><subject>Biological cementation</subject><subject>Calcium Carbonate - chemistry</subject><subject>Cementation</subject><subject>Heavy metals</subject><subject>Interfacial mechanism</subject><subject>Metals, Heavy</subject><subject>Silicates - chemistry</subject><subject>Tailings</subject><subject>Ureolytic bacteria</subject><issn>0269-7491</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1O3TAQha2KqtzSvkFVeckmt_5L7LBAQojSSqjdsLccewK-Suxb2wHxBH3t-jbAktWMNN-Z0ZyD0BdKtpTQ7ttuC-FhH6ctI4xvKaNd175DG6okbzrBxBHaENb1jRQ9PUYfc94RQgTn_AM65pIo0jKyQX-vxtFbD6HgwcfGwlxbU3wMeIDyCBBw9pO3pgAupnbhLmMT3IG-g-AttmayfplrTUMMlTvDv0yITa4DwLmkxZYlwX_RDPbeBJ9nHEdc7gH7UCCNxsIn9H40U4bPz_UE3X6_ur380dz8vv55eXHTWN6x0gyG8NYJahwXhLU9l1SRnrXWiZ4zCR1VyvXWyVFWPxRTvaqPim4EkM5wfoJO17X7FP8skIuefbYwTSZAXLJmlSacMakqKlbUpphzglHvk59NetKU6EMCeqfXBPQhAb0mUGVfny8swwzuVfRieQXOVwDqmw8eks4H_y04n8AW7aJ_-8I_Y2-aiA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>He, Zhanfei</creator><creator>Xu, Yiting</creator><creator>Yang, Yingli</creator><creator>Zhu, Pengfeng</creator><creator>Jin, Zhengzhong</creator><creator>Zhang, Daoyong</creator><creator>Pan, Xiangliang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230901</creationdate><title>Efficient bio-cementation between silicate tailings and biogenic calcium carbonate: Nano-scale structure and mechanism of the interface</title><author>He, Zhanfei ; Xu, Yiting ; Yang, Yingli ; Zhu, Pengfeng ; Jin, Zhengzhong ; Zhang, Daoyong ; Pan, Xiangliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ba035d41ad34025937180925cd49327e6188d9cd7f71668289880546fee7da33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biogenic calcium carbonate (bio-CaCO3)</topic><topic>Biological cementation</topic><topic>Calcium Carbonate - chemistry</topic><topic>Cementation</topic><topic>Heavy metals</topic><topic>Interfacial mechanism</topic><topic>Metals, Heavy</topic><topic>Silicates - chemistry</topic><topic>Tailings</topic><topic>Ureolytic bacteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhanfei</creatorcontrib><creatorcontrib>Xu, Yiting</creatorcontrib><creatorcontrib>Yang, Yingli</creatorcontrib><creatorcontrib>Zhu, Pengfeng</creatorcontrib><creatorcontrib>Jin, Zhengzhong</creatorcontrib><creatorcontrib>Zhang, Daoyong</creatorcontrib><creatorcontrib>Pan, Xiangliang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zhanfei</au><au>Xu, Yiting</au><au>Yang, Yingli</au><au>Zhu, Pengfeng</au><au>Jin, Zhengzhong</au><au>Zhang, Daoyong</au><au>Pan, Xiangliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient bio-cementation between silicate tailings and biogenic calcium carbonate: Nano-scale structure and mechanism of the interface</atitle><jtitle>Environmental pollution (1987)</jtitle><addtitle>Environ Pollut</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>332</volume><spage>121665</spage><epage>121665</epage><pages>121665-121665</pages><artnum>121665</artnum><issn>0269-7491</issn><eissn>1873-6424</eissn><abstract>Biogenic calcium carbonate (bio-CaCO3) cementing tailings is an efficient technology to immobilize heavy metals in waste tailings. However, the underlying mechanism of interface cementation has not yet been clearly established, which limits the technological development. In this study, we used advanced techniques, including atomic force microscopy-based Lorentz contact resonance (AFM-LCR) spectroscopy, AFM-based nanoscale infrared (AFM-IR) spectroscopy, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy, to reveal the structural, mechanical, and chemical properties of the interface on the nanoscale. Ureolytic bacteria produced bio-CaCO3 to fill in pore space and to bind cement tailings particles, which prevented the formation of leachate containing heavy metals. After cementation, a strong 40–300 nm thin interface was formed between the taillings and bio-CaCO3 particles. Unlike chemically synthesized CaCO3, bio-CaCO3 is strongly negatively charged, which gives it better adhesion ability. Fourier transform infrared (FTIR), AFM-IR, and 29Si ssNMR spectra indicated that the Si–OH and Si–O–Si groups on the silicate surface were converted to deprotonated silanol groups (≡Si–O-) at a high pH and they formed strong chemical bonds of Si–O–Ca on the interface through a Ca ion bridge. In addition, hydrogen bonding with Si–OH also played a role at the cementation interface. These findings provide the nano-scale interfacial structure and mechanism of bio-CaCO3 cementing silicate tailings and accelerate the development of tailings disposal technology. [Display omitted] •Bio-CaCO3 cementing tailings is an efficient way to control heavy metal pollution in tailings.•An interface with greater mechanical strength was formed between the tailings and bio-CaCO3.•A strong chemical bond Si–O–Ca was an important chemical structure on the cemented interface.•Intermolecular forces and hydrogen bonding also played important roles during cementation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37080520</pmid><doi>10.1016/j.envpol.2023.121665</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-7491
ispartof Environmental pollution (1987), 2023-09, Vol.332, p.121665-121665, Article 121665
issn 0269-7491
1873-6424
language eng
recordid cdi_proquest_miscellaneous_2805032278
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biogenic calcium carbonate (bio-CaCO3)
Biological cementation
Calcium Carbonate - chemistry
Cementation
Heavy metals
Interfacial mechanism
Metals, Heavy
Silicates - chemistry
Tailings
Ureolytic bacteria
title Efficient bio-cementation between silicate tailings and biogenic calcium carbonate: Nano-scale structure and mechanism of the interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20bio-cementation%20between%20silicate%20tailings%20and%20biogenic%20calcium%20carbonate:%20Nano-scale%20structure%20and%20mechanism%20of%20the%20interface&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=He,%20Zhanfei&rft.date=2023-09-01&rft.volume=332&rft.spage=121665&rft.epage=121665&rft.pages=121665-121665&rft.artnum=121665&rft.issn=0269-7491&rft.eissn=1873-6424&rft_id=info:doi/10.1016/j.envpol.2023.121665&rft_dat=%3Cproquest_cross%3E2805032278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805032278&rft_id=info:pmid/37080520&rft_els_id=S026974912300667X&rfr_iscdi=true