Quantum neuronal sensing of quantum many-body states on a 61-qubit programmable superconducting processor

[Display omitted] Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science bulletin 2023-05, Vol.68 (9), p.906-912
Hauptverfasser: Gong, Ming, Huang, He-Liang, Wang, Shiyu, Guo, Chu, Li, Shaowei, Wu, Yulin, Zhu, Qingling, Zhao, Youwei, Guo, Shaojun, Qian, Haoran, Ye, Yangsen, Zha, Chen, Chen, Fusheng, Ying, Chong, Yu, Jiale, Fan, Daojin, Wu, Dachao, Su, Hong, Deng, Hui, Rong, Hao, Zhang, Kaili, Cao, Sirui, Lin, Jin, Xu, Yu, Sun, Lihua, Guo, Cheng, Li, Na, Liang, Futian, Sakurai, Akitada, Nemoto, Kae, Munro, William J., Huo, Yong-Heng, Lu, Chao-Yang, Peng, Cheng-Zhi, Zhu, Xiaobo, Pan, Jian-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 912
container_issue 9
container_start_page 906
container_title Science bulletin
container_volume 68
creator Gong, Ming
Huang, He-Liang
Wang, Shiyu
Guo, Chu
Li, Shaowei
Wu, Yulin
Zhu, Qingling
Zhao, Youwei
Guo, Shaojun
Qian, Haoran
Ye, Yangsen
Zha, Chen
Chen, Fusheng
Ying, Chong
Yu, Jiale
Fan, Daojin
Wu, Dachao
Su, Hong
Deng, Hui
Rong, Hao
Zhang, Kaili
Cao, Sirui
Lin, Jin
Xu, Yu
Sun, Lihua
Guo, Cheng
Li, Na
Liang, Futian
Sakurai, Akitada
Nemoto, Kae
Munro, William J.
Huo, Yong-Heng
Lu, Chao-Yang
Peng, Cheng-Zhi
Zhu, Xiaobo
Pan, Jian-Wei
description [Display omitted] Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale quantum states has been extremely challenging for classical approaches. Here, we propose a new approach called quantum neuronal sensing. Utilizing a 61-qubit superconducting quantum processor, we show that our scheme can efficiently classify two different types of many-body phenomena: namely the ergodic and localized phases of matter. Our quantum neuronal sensing process allows us to extract the necessary information coming from the statistical characteristics of the eigenspectrum to distinguish these phases of matter by measuring only one qubit and offers better phase resolution than conventional methods, such as measuring the imbalance. Our work demonstrates the feasibility and scalability of quantum neuronal sensing for near-term quantum processors and opens new avenues for exploring quantum many-body phenomena in larger-scale systems.
doi_str_mv 10.1016/j.scib.2023.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805031927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2095927323002359</els_id><sourcerecordid>2805031927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-6ca3f38c6b10626efee0c8c06d3db838e27521ec9dd475ecc89abb4aef6b91c83</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoacI2f6CHoGMvdkaSP2TopYS2CQRKoT0LfYyDFlvalazC_vva7DbHnGZg3nmGeQj5xKBmwLr7fZ2tNzUHLmpoagBxRW44DG01cMnevfa9uCa3Oe8BgDUDb6D_QK5FD7IVQ39D_K-iw1JmGrCkGPREM4bswwuNIz1eZrMOp8pEd6J50QtmGgPVtGPVsRi_0EOKL0nPszYT0lwOmGwMrthlw6xDiznH9JG8H_WU8fZSd-TP92-_Hx6r558_nh6-Ple2AViqzmoxCmk7w6DjHY6IYKWFzglnpJDI-5YztINzTd-itXLQxjQax84MzEqxI5_P3PXysWBe1OyzxWnSAWPJiktoQbDNzI7wc9SmmHPCUR2Sn3U6KQZqs6z2arOsNssKGrVaXpfuLvxiZnSvK_-droEv5wCuX_71mDYGBovOJ7SLctG_xf8HNAmQaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805031927</pqid></control><display><type>article</type><title>Quantum neuronal sensing of quantum many-body states on a 61-qubit programmable superconducting processor</title><source>Alma/SFX Local Collection</source><creator>Gong, Ming ; Huang, He-Liang ; Wang, Shiyu ; Guo, Chu ; Li, Shaowei ; Wu, Yulin ; Zhu, Qingling ; Zhao, Youwei ; Guo, Shaojun ; Qian, Haoran ; Ye, Yangsen ; Zha, Chen ; Chen, Fusheng ; Ying, Chong ; Yu, Jiale ; Fan, Daojin ; Wu, Dachao ; Su, Hong ; Deng, Hui ; Rong, Hao ; Zhang, Kaili ; Cao, Sirui ; Lin, Jin ; Xu, Yu ; Sun, Lihua ; Guo, Cheng ; Li, Na ; Liang, Futian ; Sakurai, Akitada ; Nemoto, Kae ; Munro, William J. ; Huo, Yong-Heng ; Lu, Chao-Yang ; Peng, Cheng-Zhi ; Zhu, Xiaobo ; Pan, Jian-Wei</creator><creatorcontrib>Gong, Ming ; Huang, He-Liang ; Wang, Shiyu ; Guo, Chu ; Li, Shaowei ; Wu, Yulin ; Zhu, Qingling ; Zhao, Youwei ; Guo, Shaojun ; Qian, Haoran ; Ye, Yangsen ; Zha, Chen ; Chen, Fusheng ; Ying, Chong ; Yu, Jiale ; Fan, Daojin ; Wu, Dachao ; Su, Hong ; Deng, Hui ; Rong, Hao ; Zhang, Kaili ; Cao, Sirui ; Lin, Jin ; Xu, Yu ; Sun, Lihua ; Guo, Cheng ; Li, Na ; Liang, Futian ; Sakurai, Akitada ; Nemoto, Kae ; Munro, William J. ; Huo, Yong-Heng ; Lu, Chao-Yang ; Peng, Cheng-Zhi ; Zhu, Xiaobo ; Pan, Jian-Wei</creatorcontrib><description>[Display omitted] Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale quantum states has been extremely challenging for classical approaches. Here, we propose a new approach called quantum neuronal sensing. Utilizing a 61-qubit superconducting quantum processor, we show that our scheme can efficiently classify two different types of many-body phenomena: namely the ergodic and localized phases of matter. Our quantum neuronal sensing process allows us to extract the necessary information coming from the statistical characteristics of the eigenspectrum to distinguish these phases of matter by measuring only one qubit and offers better phase resolution than conventional methods, such as measuring the imbalance. Our work demonstrates the feasibility and scalability of quantum neuronal sensing for near-term quantum processors and opens new avenues for exploring quantum many-body phenomena in larger-scale systems.</description><identifier>ISSN: 2095-9273</identifier><identifier>EISSN: 2095-9281</identifier><identifier>DOI: 10.1016/j.scib.2023.04.003</identifier><identifier>PMID: 37085397</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Quantum many-body state ; Quantum neural network ; Superconducting qubit ; Variational quantum eigensolver</subject><ispartof>Science bulletin, 2023-05, Vol.68 (9), p.906-912</ispartof><rights>2023 Science China Press</rights><rights>Copyright © 2023 Science China Press. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-6ca3f38c6b10626efee0c8c06d3db838e27521ec9dd475ecc89abb4aef6b91c83</citedby><cites>FETCH-LOGICAL-c400t-6ca3f38c6b10626efee0c8c06d3db838e27521ec9dd475ecc89abb4aef6b91c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37085397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Ming</creatorcontrib><creatorcontrib>Huang, He-Liang</creatorcontrib><creatorcontrib>Wang, Shiyu</creatorcontrib><creatorcontrib>Guo, Chu</creatorcontrib><creatorcontrib>Li, Shaowei</creatorcontrib><creatorcontrib>Wu, Yulin</creatorcontrib><creatorcontrib>Zhu, Qingling</creatorcontrib><creatorcontrib>Zhao, Youwei</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Qian, Haoran</creatorcontrib><creatorcontrib>Ye, Yangsen</creatorcontrib><creatorcontrib>Zha, Chen</creatorcontrib><creatorcontrib>Chen, Fusheng</creatorcontrib><creatorcontrib>Ying, Chong</creatorcontrib><creatorcontrib>Yu, Jiale</creatorcontrib><creatorcontrib>Fan, Daojin</creatorcontrib><creatorcontrib>Wu, Dachao</creatorcontrib><creatorcontrib>Su, Hong</creatorcontrib><creatorcontrib>Deng, Hui</creatorcontrib><creatorcontrib>Rong, Hao</creatorcontrib><creatorcontrib>Zhang, Kaili</creatorcontrib><creatorcontrib>Cao, Sirui</creatorcontrib><creatorcontrib>Lin, Jin</creatorcontrib><creatorcontrib>Xu, Yu</creatorcontrib><creatorcontrib>Sun, Lihua</creatorcontrib><creatorcontrib>Guo, Cheng</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Liang, Futian</creatorcontrib><creatorcontrib>Sakurai, Akitada</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Huo, Yong-Heng</creatorcontrib><creatorcontrib>Lu, Chao-Yang</creatorcontrib><creatorcontrib>Peng, Cheng-Zhi</creatorcontrib><creatorcontrib>Zhu, Xiaobo</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><title>Quantum neuronal sensing of quantum many-body states on a 61-qubit programmable superconducting processor</title><title>Science bulletin</title><addtitle>Sci Bull (Beijing)</addtitle><description>[Display omitted] Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale quantum states has been extremely challenging for classical approaches. Here, we propose a new approach called quantum neuronal sensing. Utilizing a 61-qubit superconducting quantum processor, we show that our scheme can efficiently classify two different types of many-body phenomena: namely the ergodic and localized phases of matter. Our quantum neuronal sensing process allows us to extract the necessary information coming from the statistical characteristics of the eigenspectrum to distinguish these phases of matter by measuring only one qubit and offers better phase resolution than conventional methods, such as measuring the imbalance. Our work demonstrates the feasibility and scalability of quantum neuronal sensing for near-term quantum processors and opens new avenues for exploring quantum many-body phenomena in larger-scale systems.</description><subject>Quantum many-body state</subject><subject>Quantum neural network</subject><subject>Superconducting qubit</subject><subject>Variational quantum eigensolver</subject><issn>2095-9273</issn><issn>2095-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVoacI2f6CHoGMvdkaSP2TopYS2CQRKoT0LfYyDFlvalazC_vva7DbHnGZg3nmGeQj5xKBmwLr7fZ2tNzUHLmpoagBxRW44DG01cMnevfa9uCa3Oe8BgDUDb6D_QK5FD7IVQ39D_K-iw1JmGrCkGPREM4bswwuNIz1eZrMOp8pEd6J50QtmGgPVtGPVsRi_0EOKL0nPszYT0lwOmGwMrthlw6xDiznH9JG8H_WU8fZSd-TP92-_Hx6r558_nh6-Ple2AViqzmoxCmk7w6DjHY6IYKWFzglnpJDI-5YztINzTd-itXLQxjQax84MzEqxI5_P3PXysWBe1OyzxWnSAWPJiktoQbDNzI7wc9SmmHPCUR2Sn3U6KQZqs6z2arOsNssKGrVaXpfuLvxiZnSvK_-droEv5wCuX_71mDYGBovOJ7SLctG_xf8HNAmQaQ</recordid><startdate>20230515</startdate><enddate>20230515</enddate><creator>Gong, Ming</creator><creator>Huang, He-Liang</creator><creator>Wang, Shiyu</creator><creator>Guo, Chu</creator><creator>Li, Shaowei</creator><creator>Wu, Yulin</creator><creator>Zhu, Qingling</creator><creator>Zhao, Youwei</creator><creator>Guo, Shaojun</creator><creator>Qian, Haoran</creator><creator>Ye, Yangsen</creator><creator>Zha, Chen</creator><creator>Chen, Fusheng</creator><creator>Ying, Chong</creator><creator>Yu, Jiale</creator><creator>Fan, Daojin</creator><creator>Wu, Dachao</creator><creator>Su, Hong</creator><creator>Deng, Hui</creator><creator>Rong, Hao</creator><creator>Zhang, Kaili</creator><creator>Cao, Sirui</creator><creator>Lin, Jin</creator><creator>Xu, Yu</creator><creator>Sun, Lihua</creator><creator>Guo, Cheng</creator><creator>Li, Na</creator><creator>Liang, Futian</creator><creator>Sakurai, Akitada</creator><creator>Nemoto, Kae</creator><creator>Munro, William J.</creator><creator>Huo, Yong-Heng</creator><creator>Lu, Chao-Yang</creator><creator>Peng, Cheng-Zhi</creator><creator>Zhu, Xiaobo</creator><creator>Pan, Jian-Wei</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230515</creationdate><title>Quantum neuronal sensing of quantum many-body states on a 61-qubit programmable superconducting processor</title><author>Gong, Ming ; Huang, He-Liang ; Wang, Shiyu ; Guo, Chu ; Li, Shaowei ; Wu, Yulin ; Zhu, Qingling ; Zhao, Youwei ; Guo, Shaojun ; Qian, Haoran ; Ye, Yangsen ; Zha, Chen ; Chen, Fusheng ; Ying, Chong ; Yu, Jiale ; Fan, Daojin ; Wu, Dachao ; Su, Hong ; Deng, Hui ; Rong, Hao ; Zhang, Kaili ; Cao, Sirui ; Lin, Jin ; Xu, Yu ; Sun, Lihua ; Guo, Cheng ; Li, Na ; Liang, Futian ; Sakurai, Akitada ; Nemoto, Kae ; Munro, William J. ; Huo, Yong-Heng ; Lu, Chao-Yang ; Peng, Cheng-Zhi ; Zhu, Xiaobo ; Pan, Jian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-6ca3f38c6b10626efee0c8c06d3db838e27521ec9dd475ecc89abb4aef6b91c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Quantum many-body state</topic><topic>Quantum neural network</topic><topic>Superconducting qubit</topic><topic>Variational quantum eigensolver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Ming</creatorcontrib><creatorcontrib>Huang, He-Liang</creatorcontrib><creatorcontrib>Wang, Shiyu</creatorcontrib><creatorcontrib>Guo, Chu</creatorcontrib><creatorcontrib>Li, Shaowei</creatorcontrib><creatorcontrib>Wu, Yulin</creatorcontrib><creatorcontrib>Zhu, Qingling</creatorcontrib><creatorcontrib>Zhao, Youwei</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Qian, Haoran</creatorcontrib><creatorcontrib>Ye, Yangsen</creatorcontrib><creatorcontrib>Zha, Chen</creatorcontrib><creatorcontrib>Chen, Fusheng</creatorcontrib><creatorcontrib>Ying, Chong</creatorcontrib><creatorcontrib>Yu, Jiale</creatorcontrib><creatorcontrib>Fan, Daojin</creatorcontrib><creatorcontrib>Wu, Dachao</creatorcontrib><creatorcontrib>Su, Hong</creatorcontrib><creatorcontrib>Deng, Hui</creatorcontrib><creatorcontrib>Rong, Hao</creatorcontrib><creatorcontrib>Zhang, Kaili</creatorcontrib><creatorcontrib>Cao, Sirui</creatorcontrib><creatorcontrib>Lin, Jin</creatorcontrib><creatorcontrib>Xu, Yu</creatorcontrib><creatorcontrib>Sun, Lihua</creatorcontrib><creatorcontrib>Guo, Cheng</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Liang, Futian</creatorcontrib><creatorcontrib>Sakurai, Akitada</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Huo, Yong-Heng</creatorcontrib><creatorcontrib>Lu, Chao-Yang</creatorcontrib><creatorcontrib>Peng, Cheng-Zhi</creatorcontrib><creatorcontrib>Zhu, Xiaobo</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Ming</au><au>Huang, He-Liang</au><au>Wang, Shiyu</au><au>Guo, Chu</au><au>Li, Shaowei</au><au>Wu, Yulin</au><au>Zhu, Qingling</au><au>Zhao, Youwei</au><au>Guo, Shaojun</au><au>Qian, Haoran</au><au>Ye, Yangsen</au><au>Zha, Chen</au><au>Chen, Fusheng</au><au>Ying, Chong</au><au>Yu, Jiale</au><au>Fan, Daojin</au><au>Wu, Dachao</au><au>Su, Hong</au><au>Deng, Hui</au><au>Rong, Hao</au><au>Zhang, Kaili</au><au>Cao, Sirui</au><au>Lin, Jin</au><au>Xu, Yu</au><au>Sun, Lihua</au><au>Guo, Cheng</au><au>Li, Na</au><au>Liang, Futian</au><au>Sakurai, Akitada</au><au>Nemoto, Kae</au><au>Munro, William J.</au><au>Huo, Yong-Heng</au><au>Lu, Chao-Yang</au><au>Peng, Cheng-Zhi</au><au>Zhu, Xiaobo</au><au>Pan, Jian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum neuronal sensing of quantum many-body states on a 61-qubit programmable superconducting processor</atitle><jtitle>Science bulletin</jtitle><addtitle>Sci Bull (Beijing)</addtitle><date>2023-05-15</date><risdate>2023</risdate><volume>68</volume><issue>9</issue><spage>906</spage><epage>912</epage><pages>906-912</pages><issn>2095-9273</issn><eissn>2095-9281</eissn><abstract>[Display omitted] Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale quantum states has been extremely challenging for classical approaches. Here, we propose a new approach called quantum neuronal sensing. Utilizing a 61-qubit superconducting quantum processor, we show that our scheme can efficiently classify two different types of many-body phenomena: namely the ergodic and localized phases of matter. Our quantum neuronal sensing process allows us to extract the necessary information coming from the statistical characteristics of the eigenspectrum to distinguish these phases of matter by measuring only one qubit and offers better phase resolution than conventional methods, such as measuring the imbalance. Our work demonstrates the feasibility and scalability of quantum neuronal sensing for near-term quantum processors and opens new avenues for exploring quantum many-body phenomena in larger-scale systems.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37085397</pmid><doi>10.1016/j.scib.2023.04.003</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-9273
ispartof Science bulletin, 2023-05, Vol.68 (9), p.906-912
issn 2095-9273
2095-9281
language eng
recordid cdi_proquest_miscellaneous_2805031927
source Alma/SFX Local Collection
subjects Quantum many-body state
Quantum neural network
Superconducting qubit
Variational quantum eigensolver
title Quantum neuronal sensing of quantum many-body states on a 61-qubit programmable superconducting processor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20neuronal%20sensing%20of%20quantum%20many-body%20states%20on%20a%2061-qubit%20programmable%20superconducting%20processor&rft.jtitle=Science%20bulletin&rft.au=Gong,%20Ming&rft.date=2023-05-15&rft.volume=68&rft.issue=9&rft.spage=906&rft.epage=912&rft.pages=906-912&rft.issn=2095-9273&rft.eissn=2095-9281&rft_id=info:doi/10.1016/j.scib.2023.04.003&rft_dat=%3Cproquest_cross%3E2805031927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805031927&rft_id=info:pmid/37085397&rft_els_id=S2095927323002359&rfr_iscdi=true