Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model
Since the processes of dissolution and membrane permeation are affected by the water content in the gastrointestinal (GI) tract, the water dynamics in the GI tract is expected to have a significant impact on the absorption of orally administered drugs. Here, we aimed to develop a physiologically bas...
Gespeichert in:
Veröffentlicht in: | The AAPS journal 2023-04, Vol.25 (3), p.42-42, Article 42 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 3 |
container_start_page | 42 |
container_title | The AAPS journal |
container_volume | 25 |
creator | Suzuki, Satoru Inoue, Katsuhisa Tamai, Ikumi Shirasaka, Yoshiyuki |
description | Since the processes of dissolution and membrane permeation are affected by the water content in the gastrointestinal (GI) tract, the water dynamics in the GI tract is expected to have a significant impact on the absorption of orally administered drugs. Here, we aimed to develop a physiologically based fluid kinetic (PBFK) model using GI water kinetic parameters obtained from
in situ
closed-loop studies in rats in order to quantitatively predict GI water dynamics. By incorporating the experimentally measured site-specific parameters of GI water absorption and secretion into a GI compartment model, we developed a bottom-up PBFK model that successfully simulates the reported GI fluid dynamics in rats and humans observed using positron emission tomography and magnetic resonance imaging, respectively. The simulations indicate that the water volume in both the stomach and duodenum is transiently increased by water ingestion, while that in the intestine below the jejunum is unchanged and remains in a steady state in both rats and humans. Furthermore, sensitivity analysis of the effect of ingested water volume on the volume-time profiles of water in the GI tract indicated that the impact of ingested water is limited to the proximal part of the GI tract. Simulations indicated that changes in water kinetic parameters may alter the impact of the ingested water on GI fluid dynamics, especially in the proximal part. Incorporating this PBFK model into a physiologically based pharmacokinetic (PBPK) absorption model has the potential to predict oral drug absorption in a variety of GI water environments.
Graphical Abstract |
doi_str_mv | 10.1208/s12248-023-00809-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805029907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746441096</galeid><sourcerecordid>A746441096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-bca83c8158d3667cc219b80938931583ef42441224e13675743947a4cdb492c23</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMotlb_gAsJuHEzNV8zySyvta1iiwqKy5DJnLmm5CbXJCPMv29up4qCSBYJJ897vl6EnlNyShlRrzNlTKiGMN4QokjfsAfomLYtaaSg3cM_3kfoSc43hHDGKX2MjrgkitJWHqP959mE4oop7ifgTTB-yS7jOOFLk0uKLhTIxdU4_mYKJPx2CWbnbMbDgq_BhDvW4E_fqy76uHXWeL_gNybDiC_87Eb8wQUozuLrOIJ_ih5Nxmd4dn-foK8X51_O3jVXHy_fn22uGis4Lc1gjeJW0VaNvOuktYz2Q52Rq57XIIdJMCEOCwDKO9lKwXshjbDjIHpmGT9Br9a8-xR_zHUGvXPZgvcmQJyzZoq0hPU9kRV9uaJb40G7MMWSjD3geiNFV8uQvqvU6T-oekao-4gBJlfjfwnYKrAp5pxg0vvkdiYtmhJ9MFCvBupqoL4zUB_afnHf9jzsYPwt-eVYBfgK5PoVtpD0TZxT9Sf_L-0tKuWj2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805029907</pqid></control><display><type>article</type><title>Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Suzuki, Satoru ; Inoue, Katsuhisa ; Tamai, Ikumi ; Shirasaka, Yoshiyuki</creator><creatorcontrib>Suzuki, Satoru ; Inoue, Katsuhisa ; Tamai, Ikumi ; Shirasaka, Yoshiyuki</creatorcontrib><description>Since the processes of dissolution and membrane permeation are affected by the water content in the gastrointestinal (GI) tract, the water dynamics in the GI tract is expected to have a significant impact on the absorption of orally administered drugs. Here, we aimed to develop a physiologically based fluid kinetic (PBFK) model using GI water kinetic parameters obtained from
in situ
closed-loop studies in rats in order to quantitatively predict GI water dynamics. By incorporating the experimentally measured site-specific parameters of GI water absorption and secretion into a GI compartment model, we developed a bottom-up PBFK model that successfully simulates the reported GI fluid dynamics in rats and humans observed using positron emission tomography and magnetic resonance imaging, respectively. The simulations indicate that the water volume in both the stomach and duodenum is transiently increased by water ingestion, while that in the intestine below the jejunum is unchanged and remains in a steady state in both rats and humans. Furthermore, sensitivity analysis of the effect of ingested water volume on the volume-time profiles of water in the GI tract indicated that the impact of ingested water is limited to the proximal part of the GI tract. Simulations indicated that changes in water kinetic parameters may alter the impact of the ingested water on GI fluid dynamics, especially in the proximal part. Incorporating this PBFK model into a physiologically based pharmacokinetic (PBPK) absorption model has the potential to predict oral drug absorption in a variety of GI water environments.
Graphical Abstract</description><identifier>ISSN: 1550-7416</identifier><identifier>EISSN: 1550-7416</identifier><identifier>DOI: 10.1208/s12248-023-00809-2</identifier><identifier>PMID: 37081157</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Administration, Oral ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Fluid dynamics ; Gastrointestinal system ; Gastrointestinal Tract - metabolism ; Humans ; Intestinal Absorption - physiology ; Models, Biological ; Pharmacology/Toxicology ; Pharmacy ; Positron-Emission Tomography ; Rats ; Research Article ; Simulation methods ; Water</subject><ispartof>The AAPS journal, 2023-04, Vol.25 (3), p.42-42, Article 42</ispartof><rights>The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c431t-bca83c8158d3667cc219b80938931583ef42441224e13675743947a4cdb492c23</cites><orcidid>0000-0003-1472-7449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1208/s12248-023-00809-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1208/s12248-023-00809-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37081157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Satoru</creatorcontrib><creatorcontrib>Inoue, Katsuhisa</creatorcontrib><creatorcontrib>Tamai, Ikumi</creatorcontrib><creatorcontrib>Shirasaka, Yoshiyuki</creatorcontrib><title>Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model</title><title>The AAPS journal</title><addtitle>AAPS J</addtitle><addtitle>AAPS J</addtitle><description>Since the processes of dissolution and membrane permeation are affected by the water content in the gastrointestinal (GI) tract, the water dynamics in the GI tract is expected to have a significant impact on the absorption of orally administered drugs. Here, we aimed to develop a physiologically based fluid kinetic (PBFK) model using GI water kinetic parameters obtained from
in situ
closed-loop studies in rats in order to quantitatively predict GI water dynamics. By incorporating the experimentally measured site-specific parameters of GI water absorption and secretion into a GI compartment model, we developed a bottom-up PBFK model that successfully simulates the reported GI fluid dynamics in rats and humans observed using positron emission tomography and magnetic resonance imaging, respectively. The simulations indicate that the water volume in both the stomach and duodenum is transiently increased by water ingestion, while that in the intestine below the jejunum is unchanged and remains in a steady state in both rats and humans. Furthermore, sensitivity analysis of the effect of ingested water volume on the volume-time profiles of water in the GI tract indicated that the impact of ingested water is limited to the proximal part of the GI tract. Simulations indicated that changes in water kinetic parameters may alter the impact of the ingested water on GI fluid dynamics, especially in the proximal part. Incorporating this PBFK model into a physiologically based pharmacokinetic (PBPK) absorption model has the potential to predict oral drug absorption in a variety of GI water environments.
Graphical Abstract</description><subject>Administration, Oral</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Fluid dynamics</subject><subject>Gastrointestinal system</subject><subject>Gastrointestinal Tract - metabolism</subject><subject>Humans</subject><subject>Intestinal Absorption - physiology</subject><subject>Models, Biological</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Positron-Emission Tomography</subject><subject>Rats</subject><subject>Research Article</subject><subject>Simulation methods</subject><subject>Water</subject><issn>1550-7416</issn><issn>1550-7416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rFTEUhoMotlb_gAsJuHEzNV8zySyvta1iiwqKy5DJnLmm5CbXJCPMv29up4qCSBYJJ897vl6EnlNyShlRrzNlTKiGMN4QokjfsAfomLYtaaSg3cM_3kfoSc43hHDGKX2MjrgkitJWHqP959mE4oop7ifgTTB-yS7jOOFLk0uKLhTIxdU4_mYKJPx2CWbnbMbDgq_BhDvW4E_fqy76uHXWeL_gNybDiC_87Eb8wQUozuLrOIJ_ih5Nxmd4dn-foK8X51_O3jVXHy_fn22uGis4Lc1gjeJW0VaNvOuktYz2Q52Rq57XIIdJMCEOCwDKO9lKwXshjbDjIHpmGT9Br9a8-xR_zHUGvXPZgvcmQJyzZoq0hPU9kRV9uaJb40G7MMWSjD3geiNFV8uQvqvU6T-oekao-4gBJlfjfwnYKrAp5pxg0vvkdiYtmhJ9MFCvBupqoL4zUB_afnHf9jzsYPwt-eVYBfgK5PoVtpD0TZxT9Sf_L-0tKuWj2g</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>Suzuki, Satoru</creator><creator>Inoue, Katsuhisa</creator><creator>Tamai, Ikumi</creator><creator>Shirasaka, Yoshiyuki</creator><general>Springer International Publishing</general><general>Springer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1472-7449</orcidid></search><sort><creationdate>20230420</creationdate><title>Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model</title><author>Suzuki, Satoru ; Inoue, Katsuhisa ; Tamai, Ikumi ; Shirasaka, Yoshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-bca83c8158d3667cc219b80938931583ef42441224e13675743947a4cdb492c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Administration, Oral</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Fluid dynamics</topic><topic>Gastrointestinal system</topic><topic>Gastrointestinal Tract - metabolism</topic><topic>Humans</topic><topic>Intestinal Absorption - physiology</topic><topic>Models, Biological</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Positron-Emission Tomography</topic><topic>Rats</topic><topic>Research Article</topic><topic>Simulation methods</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Satoru</creatorcontrib><creatorcontrib>Inoue, Katsuhisa</creatorcontrib><creatorcontrib>Tamai, Ikumi</creatorcontrib><creatorcontrib>Shirasaka, Yoshiyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The AAPS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Satoru</au><au>Inoue, Katsuhisa</au><au>Tamai, Ikumi</au><au>Shirasaka, Yoshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model</atitle><jtitle>The AAPS journal</jtitle><stitle>AAPS J</stitle><addtitle>AAPS J</addtitle><date>2023-04-20</date><risdate>2023</risdate><volume>25</volume><issue>3</issue><spage>42</spage><epage>42</epage><pages>42-42</pages><artnum>42</artnum><issn>1550-7416</issn><eissn>1550-7416</eissn><abstract>Since the processes of dissolution and membrane permeation are affected by the water content in the gastrointestinal (GI) tract, the water dynamics in the GI tract is expected to have a significant impact on the absorption of orally administered drugs. Here, we aimed to develop a physiologically based fluid kinetic (PBFK) model using GI water kinetic parameters obtained from
in situ
closed-loop studies in rats in order to quantitatively predict GI water dynamics. By incorporating the experimentally measured site-specific parameters of GI water absorption and secretion into a GI compartment model, we developed a bottom-up PBFK model that successfully simulates the reported GI fluid dynamics in rats and humans observed using positron emission tomography and magnetic resonance imaging, respectively. The simulations indicate that the water volume in both the stomach and duodenum is transiently increased by water ingestion, while that in the intestine below the jejunum is unchanged and remains in a steady state in both rats and humans. Furthermore, sensitivity analysis of the effect of ingested water volume on the volume-time profiles of water in the GI tract indicated that the impact of ingested water is limited to the proximal part of the GI tract. Simulations indicated that changes in water kinetic parameters may alter the impact of the ingested water on GI fluid dynamics, especially in the proximal part. Incorporating this PBFK model into a physiologically based pharmacokinetic (PBPK) absorption model has the potential to predict oral drug absorption in a variety of GI water environments.
Graphical Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>37081157</pmid><doi>10.1208/s12248-023-00809-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1472-7449</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-7416 |
ispartof | The AAPS journal, 2023-04, Vol.25 (3), p.42-42, Article 42 |
issn | 1550-7416 1550-7416 |
language | eng |
recordid | cdi_proquest_miscellaneous_2805029907 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Administration, Oral Animals Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Fluid dynamics Gastrointestinal system Gastrointestinal Tract - metabolism Humans Intestinal Absorption - physiology Models, Biological Pharmacology/Toxicology Pharmacy Positron-Emission Tomography Rats Research Article Simulation methods Water |
title | Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Analysis%20of%20Gastrointestinal%20Water%20Dynamics%20by%20Means%20of%20a%20Physiologically%20Based%20Fluid%20Kinetic%20Model&rft.jtitle=The%20AAPS%20journal&rft.au=Suzuki,%20Satoru&rft.date=2023-04-20&rft.volume=25&rft.issue=3&rft.spage=42&rft.epage=42&rft.pages=42-42&rft.artnum=42&rft.issn=1550-7416&rft.eissn=1550-7416&rft_id=info:doi/10.1208/s12248-023-00809-2&rft_dat=%3Cgale_proqu%3EA746441096%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805029907&rft_id=info:pmid/37081157&rft_galeid=A746441096&rfr_iscdi=true |