Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model

Since the processes of dissolution and membrane permeation are affected by the water content in the gastrointestinal (GI) tract, the water dynamics in the GI tract is expected to have a significant impact on the absorption of orally administered drugs. Here, we aimed to develop a physiologically bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The AAPS journal 2023-04, Vol.25 (3), p.42-42, Article 42
Hauptverfasser: Suzuki, Satoru, Inoue, Katsuhisa, Tamai, Ikumi, Shirasaka, Yoshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 3
container_start_page 42
container_title The AAPS journal
container_volume 25
creator Suzuki, Satoru
Inoue, Katsuhisa
Tamai, Ikumi
Shirasaka, Yoshiyuki
description Since the processes of dissolution and membrane permeation are affected by the water content in the gastrointestinal (GI) tract, the water dynamics in the GI tract is expected to have a significant impact on the absorption of orally administered drugs. Here, we aimed to develop a physiologically based fluid kinetic (PBFK) model using GI water kinetic parameters obtained from in situ closed-loop studies in rats in order to quantitatively predict GI water dynamics. By incorporating the experimentally measured site-specific parameters of GI water absorption and secretion into a GI compartment model, we developed a bottom-up PBFK model that successfully simulates the reported GI fluid dynamics in rats and humans observed using positron emission tomography and magnetic resonance imaging, respectively. The simulations indicate that the water volume in both the stomach and duodenum is transiently increased by water ingestion, while that in the intestine below the jejunum is unchanged and remains in a steady state in both rats and humans. Furthermore, sensitivity analysis of the effect of ingested water volume on the volume-time profiles of water in the GI tract indicated that the impact of ingested water is limited to the proximal part of the GI tract. Simulations indicated that changes in water kinetic parameters may alter the impact of the ingested water on GI fluid dynamics, especially in the proximal part. Incorporating this PBFK model into a physiologically based pharmacokinetic (PBPK) absorption model has the potential to predict oral drug absorption in a variety of GI water environments. Graphical Abstract
doi_str_mv 10.1208/s12248-023-00809-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805029907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746441096</galeid><sourcerecordid>A746441096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-bca83c8158d3667cc219b80938931583ef42441224e13675743947a4cdb492c23</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMotlb_gAsJuHEzNV8zySyvta1iiwqKy5DJnLmm5CbXJCPMv29up4qCSBYJJ897vl6EnlNyShlRrzNlTKiGMN4QokjfsAfomLYtaaSg3cM_3kfoSc43hHDGKX2MjrgkitJWHqP959mE4oop7ifgTTB-yS7jOOFLk0uKLhTIxdU4_mYKJPx2CWbnbMbDgq_BhDvW4E_fqy76uHXWeL_gNybDiC_87Eb8wQUozuLrOIJ_ih5Nxmd4dn-foK8X51_O3jVXHy_fn22uGis4Lc1gjeJW0VaNvOuktYz2Q52Rq57XIIdJMCEOCwDKO9lKwXshjbDjIHpmGT9Br9a8-xR_zHUGvXPZgvcmQJyzZoq0hPU9kRV9uaJb40G7MMWSjD3geiNFV8uQvqvU6T-oekao-4gBJlfjfwnYKrAp5pxg0vvkdiYtmhJ9MFCvBupqoL4zUB_afnHf9jzsYPwt-eVYBfgK5PoVtpD0TZxT9Sf_L-0tKuWj2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805029907</pqid></control><display><type>article</type><title>Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Suzuki, Satoru ; Inoue, Katsuhisa ; Tamai, Ikumi ; Shirasaka, Yoshiyuki</creator><creatorcontrib>Suzuki, Satoru ; Inoue, Katsuhisa ; Tamai, Ikumi ; Shirasaka, Yoshiyuki</creatorcontrib><description>Since the processes of dissolution and membrane permeation are affected by the water content in the gastrointestinal (GI) tract, the water dynamics in the GI tract is expected to have a significant impact on the absorption of orally administered drugs. Here, we aimed to develop a physiologically based fluid kinetic (PBFK) model using GI water kinetic parameters obtained from in situ closed-loop studies in rats in order to quantitatively predict GI water dynamics. By incorporating the experimentally measured site-specific parameters of GI water absorption and secretion into a GI compartment model, we developed a bottom-up PBFK model that successfully simulates the reported GI fluid dynamics in rats and humans observed using positron emission tomography and magnetic resonance imaging, respectively. The simulations indicate that the water volume in both the stomach and duodenum is transiently increased by water ingestion, while that in the intestine below the jejunum is unchanged and remains in a steady state in both rats and humans. Furthermore, sensitivity analysis of the effect of ingested water volume on the volume-time profiles of water in the GI tract indicated that the impact of ingested water is limited to the proximal part of the GI tract. Simulations indicated that changes in water kinetic parameters may alter the impact of the ingested water on GI fluid dynamics, especially in the proximal part. Incorporating this PBFK model into a physiologically based pharmacokinetic (PBPK) absorption model has the potential to predict oral drug absorption in a variety of GI water environments. Graphical Abstract</description><identifier>ISSN: 1550-7416</identifier><identifier>EISSN: 1550-7416</identifier><identifier>DOI: 10.1208/s12248-023-00809-2</identifier><identifier>PMID: 37081157</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Administration, Oral ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Fluid dynamics ; Gastrointestinal system ; Gastrointestinal Tract - metabolism ; Humans ; Intestinal Absorption - physiology ; Models, Biological ; Pharmacology/Toxicology ; Pharmacy ; Positron-Emission Tomography ; Rats ; Research Article ; Simulation methods ; Water</subject><ispartof>The AAPS journal, 2023-04, Vol.25 (3), p.42-42, Article 42</ispartof><rights>The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c431t-bca83c8158d3667cc219b80938931583ef42441224e13675743947a4cdb492c23</cites><orcidid>0000-0003-1472-7449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1208/s12248-023-00809-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1208/s12248-023-00809-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37081157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Satoru</creatorcontrib><creatorcontrib>Inoue, Katsuhisa</creatorcontrib><creatorcontrib>Tamai, Ikumi</creatorcontrib><creatorcontrib>Shirasaka, Yoshiyuki</creatorcontrib><title>Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model</title><title>The AAPS journal</title><addtitle>AAPS J</addtitle><addtitle>AAPS J</addtitle><description>Since the processes of dissolution and membrane permeation are affected by the water content in the gastrointestinal (GI) tract, the water dynamics in the GI tract is expected to have a significant impact on the absorption of orally administered drugs. Here, we aimed to develop a physiologically based fluid kinetic (PBFK) model using GI water kinetic parameters obtained from in situ closed-loop studies in rats in order to quantitatively predict GI water dynamics. By incorporating the experimentally measured site-specific parameters of GI water absorption and secretion into a GI compartment model, we developed a bottom-up PBFK model that successfully simulates the reported GI fluid dynamics in rats and humans observed using positron emission tomography and magnetic resonance imaging, respectively. The simulations indicate that the water volume in both the stomach and duodenum is transiently increased by water ingestion, while that in the intestine below the jejunum is unchanged and remains in a steady state in both rats and humans. Furthermore, sensitivity analysis of the effect of ingested water volume on the volume-time profiles of water in the GI tract indicated that the impact of ingested water is limited to the proximal part of the GI tract. Simulations indicated that changes in water kinetic parameters may alter the impact of the ingested water on GI fluid dynamics, especially in the proximal part. Incorporating this PBFK model into a physiologically based pharmacokinetic (PBPK) absorption model has the potential to predict oral drug absorption in a variety of GI water environments. Graphical Abstract</description><subject>Administration, Oral</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Fluid dynamics</subject><subject>Gastrointestinal system</subject><subject>Gastrointestinal Tract - metabolism</subject><subject>Humans</subject><subject>Intestinal Absorption - physiology</subject><subject>Models, Biological</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Positron-Emission Tomography</subject><subject>Rats</subject><subject>Research Article</subject><subject>Simulation methods</subject><subject>Water</subject><issn>1550-7416</issn><issn>1550-7416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rFTEUhoMotlb_gAsJuHEzNV8zySyvta1iiwqKy5DJnLmm5CbXJCPMv29up4qCSBYJJ897vl6EnlNyShlRrzNlTKiGMN4QokjfsAfomLYtaaSg3cM_3kfoSc43hHDGKX2MjrgkitJWHqP959mE4oop7ifgTTB-yS7jOOFLk0uKLhTIxdU4_mYKJPx2CWbnbMbDgq_BhDvW4E_fqy76uHXWeL_gNybDiC_87Eb8wQUozuLrOIJ_ih5Nxmd4dn-foK8X51_O3jVXHy_fn22uGis4Lc1gjeJW0VaNvOuktYz2Q52Rq57XIIdJMCEOCwDKO9lKwXshjbDjIHpmGT9Br9a8-xR_zHUGvXPZgvcmQJyzZoq0hPU9kRV9uaJb40G7MMWSjD3geiNFV8uQvqvU6T-oekao-4gBJlfjfwnYKrAp5pxg0vvkdiYtmhJ9MFCvBupqoL4zUB_afnHf9jzsYPwt-eVYBfgK5PoVtpD0TZxT9Sf_L-0tKuWj2g</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>Suzuki, Satoru</creator><creator>Inoue, Katsuhisa</creator><creator>Tamai, Ikumi</creator><creator>Shirasaka, Yoshiyuki</creator><general>Springer International Publishing</general><general>Springer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1472-7449</orcidid></search><sort><creationdate>20230420</creationdate><title>Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model</title><author>Suzuki, Satoru ; Inoue, Katsuhisa ; Tamai, Ikumi ; Shirasaka, Yoshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-bca83c8158d3667cc219b80938931583ef42441224e13675743947a4cdb492c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Administration, Oral</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Fluid dynamics</topic><topic>Gastrointestinal system</topic><topic>Gastrointestinal Tract - metabolism</topic><topic>Humans</topic><topic>Intestinal Absorption - physiology</topic><topic>Models, Biological</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Positron-Emission Tomography</topic><topic>Rats</topic><topic>Research Article</topic><topic>Simulation methods</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Satoru</creatorcontrib><creatorcontrib>Inoue, Katsuhisa</creatorcontrib><creatorcontrib>Tamai, Ikumi</creatorcontrib><creatorcontrib>Shirasaka, Yoshiyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The AAPS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Satoru</au><au>Inoue, Katsuhisa</au><au>Tamai, Ikumi</au><au>Shirasaka, Yoshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model</atitle><jtitle>The AAPS journal</jtitle><stitle>AAPS J</stitle><addtitle>AAPS J</addtitle><date>2023-04-20</date><risdate>2023</risdate><volume>25</volume><issue>3</issue><spage>42</spage><epage>42</epage><pages>42-42</pages><artnum>42</artnum><issn>1550-7416</issn><eissn>1550-7416</eissn><abstract>Since the processes of dissolution and membrane permeation are affected by the water content in the gastrointestinal (GI) tract, the water dynamics in the GI tract is expected to have a significant impact on the absorption of orally administered drugs. Here, we aimed to develop a physiologically based fluid kinetic (PBFK) model using GI water kinetic parameters obtained from in situ closed-loop studies in rats in order to quantitatively predict GI water dynamics. By incorporating the experimentally measured site-specific parameters of GI water absorption and secretion into a GI compartment model, we developed a bottom-up PBFK model that successfully simulates the reported GI fluid dynamics in rats and humans observed using positron emission tomography and magnetic resonance imaging, respectively. The simulations indicate that the water volume in both the stomach and duodenum is transiently increased by water ingestion, while that in the intestine below the jejunum is unchanged and remains in a steady state in both rats and humans. Furthermore, sensitivity analysis of the effect of ingested water volume on the volume-time profiles of water in the GI tract indicated that the impact of ingested water is limited to the proximal part of the GI tract. Simulations indicated that changes in water kinetic parameters may alter the impact of the ingested water on GI fluid dynamics, especially in the proximal part. Incorporating this PBFK model into a physiologically based pharmacokinetic (PBPK) absorption model has the potential to predict oral drug absorption in a variety of GI water environments. Graphical Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>37081157</pmid><doi>10.1208/s12248-023-00809-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1472-7449</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1550-7416
ispartof The AAPS journal, 2023-04, Vol.25 (3), p.42-42, Article 42
issn 1550-7416
1550-7416
language eng
recordid cdi_proquest_miscellaneous_2805029907
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Administration, Oral
Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Fluid dynamics
Gastrointestinal system
Gastrointestinal Tract - metabolism
Humans
Intestinal Absorption - physiology
Models, Biological
Pharmacology/Toxicology
Pharmacy
Positron-Emission Tomography
Rats
Research Article
Simulation methods
Water
title Quantitative Analysis of Gastrointestinal Water Dynamics by Means of a Physiologically Based Fluid Kinetic Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Analysis%20of%20Gastrointestinal%20Water%20Dynamics%20by%20Means%20of%20a%20Physiologically%20Based%20Fluid%20Kinetic%20Model&rft.jtitle=The%20AAPS%20journal&rft.au=Suzuki,%20Satoru&rft.date=2023-04-20&rft.volume=25&rft.issue=3&rft.spage=42&rft.epage=42&rft.pages=42-42&rft.artnum=42&rft.issn=1550-7416&rft.eissn=1550-7416&rft_id=info:doi/10.1208/s12248-023-00809-2&rft_dat=%3Cgale_proqu%3EA746441096%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805029907&rft_id=info:pmid/37081157&rft_galeid=A746441096&rfr_iscdi=true