A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium‐Intercalated γ‐NiOOHx Enabling High‐Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5‐Hydroxymethylfurfural

The low‐temperature molecular precursor approach can be beneficial to conventional solid‐state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single‐step, room‐temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-08, Vol.19 (33), p.e2301258-n/a
Hauptverfasser: Dasgupta, Basundhara, Hausmann, Jan Niklas, Beltrán‐Suito, Rodrigo, Kalra, Shweta, Laun, Konstantin, Zebger, Ingo, Driess, Matthias, Menezes, Prashanth Wilfred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page e2301258
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Dasgupta, Basundhara
Hausmann, Jan Niklas
Beltrán‐Suito, Rodrigo
Kalra, Shweta
Laun, Konstantin
Zebger, Ingo
Driess, Matthias
Menezes, Prashanth Wilfred
description The low‐temperature molecular precursor approach can be beneficial to conventional solid‐state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single‐step, room‐temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)n and NiBr2(thf)1.5. During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ‐NiOOH) comprising edge‐sharing (NiO6) layers with intercalated potassium ions and a d‐spacing of 7.27 Å. Remarkably, the intercalated γ‐NiOOHx phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ‐NiOOHx can effectively catalyse the OER for 100 h at a high current density (400 mA cm−2) and achieves outstandingly high current densities (>600 mA cm−2) for the selective, value‐added oxidation of 5‐hydroxymethylfurfural (HMF). The NiP‐derived γ‐NiOOHx shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room‐temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition‐metal pnictides. A room‐temperature synthesis of amorphous nickel pnictide precatalysts from NaOCE (EP, As) is reported to achieve efficient performance towards the oxygen evolution reaction (OER) and 5‐hydroxymethylfurfural oxidation. In situ and ex situ methods reveal a complete reconstruction of both amorphous NiE materials into nanocrystalline, potassium‐intercalated γ‐NiOOHx active phases under OER conditions.
doi_str_mv 10.1002/smll.202301258
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805028815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2851446375</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3068-62bf4f216b26fa0734193b544bf50453f7454d69f54987958ec19f4a49aa73703</originalsourceid><addsrcrecordid>eNpdkstu1DAUhiMEEqVly9oSGzZTfM1lORpNmUrTzogWsYwcx25cHDvYDkx2PALvwnvwEDwFyzoUjRCSJfscf-f41_GfZa8QPEcQ4rehN-YcQ0wgwqx8kp2gHJFFXuLq6fGM4PPsRQj3EBKEaXGS_V6CCy60keDKGSlGwz1YDoN3XHQgOrDsnR86NwZwrcUnacDeahF1KwPgtgW3ndQevJfC2RD9mG6cnctWfgqRG6OtBHsXeQh67H99-35po_SCGx5lC37-SJlrvdttDmBteZPoO7DRd11K76VXzvfcCgnWSVj0TvDUcYpagI-p3IPdQbf8z4Ozkhs5U_qL_CfvFGCp12ZqvTtMvYzdZNTo0-LmLHumuAny5d_9NPtwsb5dbRbb3bvL1XK7GAjMy0WOG0UVRnmDc8VhQSiqSMMobRSDlBFVUEbbvFKMVmVRsVIKVCnKacV5QQpITrM3j33TTD-PMsS610FIY7iVaaw1LiGDuCwRS-jr_9B7N3qb1CWKIUpzUsxU9Uh9Tb821YPXPfdTjWA9u6CeXVAfXVDfXG23x4g8AKUzsug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851446375</pqid></control><display><type>article</type><title>A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium‐Intercalated γ‐NiOOHx Enabling High‐Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5‐Hydroxymethylfurfural</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Dasgupta, Basundhara ; Hausmann, Jan Niklas ; Beltrán‐Suito, Rodrigo ; Kalra, Shweta ; Laun, Konstantin ; Zebger, Ingo ; Driess, Matthias ; Menezes, Prashanth Wilfred</creator><creatorcontrib>Dasgupta, Basundhara ; Hausmann, Jan Niklas ; Beltrán‐Suito, Rodrigo ; Kalra, Shweta ; Laun, Konstantin ; Zebger, Ingo ; Driess, Matthias ; Menezes, Prashanth Wilfred</creatorcontrib><description>The low‐temperature molecular precursor approach can be beneficial to conventional solid‐state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single‐step, room‐temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)n and NiBr2(thf)1.5. During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ‐NiOOH) comprising edge‐sharing (NiO6) layers with intercalated potassium ions and a d‐spacing of 7.27 Å. Remarkably, the intercalated γ‐NiOOHx phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ‐NiOOHx can effectively catalyse the OER for 100 h at a high current density (400 mA cm−2) and achieves outstandingly high current densities (&gt;600 mA cm−2) for the selective, value‐added oxidation of 5‐hydroxymethylfurfural (HMF). The NiP‐derived γ‐NiOOHx shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room‐temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition‐metal pnictides. A room‐temperature synthesis of amorphous nickel pnictide precatalysts from NaOCE (EP, As) is reported to achieve efficient performance towards the oxygen evolution reaction (OER) and 5‐hydroxymethylfurfural oxidation. In situ and ex situ methods reveal a complete reconstruction of both amorphous NiE materials into nanocrystalline, potassium‐intercalated γ‐NiOOHx active phases under OER conditions.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202301258</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>amorphous‐crystalline ; Chemical synthesis ; Current density ; gamma γ‐nickel oxyhydroxide ; Group 5A compounds ; High current ; High temperature ; Hydroxymethylfurfural ; Nanomaterials ; Nanotechnology ; Nickel ; nickel arsenide ; nickel phosphide ; organic oxidation ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; Potassium ; Reconstruction ; Temperature</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-08, Vol.19 (33), p.e2301258-n/a</ispartof><rights>2023 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0665-7690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202301258$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202301258$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dasgupta, Basundhara</creatorcontrib><creatorcontrib>Hausmann, Jan Niklas</creatorcontrib><creatorcontrib>Beltrán‐Suito, Rodrigo</creatorcontrib><creatorcontrib>Kalra, Shweta</creatorcontrib><creatorcontrib>Laun, Konstantin</creatorcontrib><creatorcontrib>Zebger, Ingo</creatorcontrib><creatorcontrib>Driess, Matthias</creatorcontrib><creatorcontrib>Menezes, Prashanth Wilfred</creatorcontrib><title>A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium‐Intercalated γ‐NiOOHx Enabling High‐Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5‐Hydroxymethylfurfural</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>The low‐temperature molecular precursor approach can be beneficial to conventional solid‐state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single‐step, room‐temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)n and NiBr2(thf)1.5. During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ‐NiOOH) comprising edge‐sharing (NiO6) layers with intercalated potassium ions and a d‐spacing of 7.27 Å. Remarkably, the intercalated γ‐NiOOHx phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ‐NiOOHx can effectively catalyse the OER for 100 h at a high current density (400 mA cm−2) and achieves outstandingly high current densities (&gt;600 mA cm−2) for the selective, value‐added oxidation of 5‐hydroxymethylfurfural (HMF). The NiP‐derived γ‐NiOOHx shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room‐temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition‐metal pnictides. A room‐temperature synthesis of amorphous nickel pnictide precatalysts from NaOCE (EP, As) is reported to achieve efficient performance towards the oxygen evolution reaction (OER) and 5‐hydroxymethylfurfural oxidation. In situ and ex situ methods reveal a complete reconstruction of both amorphous NiE materials into nanocrystalline, potassium‐intercalated γ‐NiOOHx active phases under OER conditions.</description><subject>amorphous‐crystalline</subject><subject>Chemical synthesis</subject><subject>Current density</subject><subject>gamma γ‐nickel oxyhydroxide</subject><subject>Group 5A compounds</subject><subject>High current</subject><subject>High temperature</subject><subject>Hydroxymethylfurfural</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>nickel arsenide</subject><subject>nickel phosphide</subject><subject>organic oxidation</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Potassium</subject><subject>Reconstruction</subject><subject>Temperature</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpdkstu1DAUhiMEEqVly9oSGzZTfM1lORpNmUrTzogWsYwcx25cHDvYDkx2PALvwnvwEDwFyzoUjRCSJfscf-f41_GfZa8QPEcQ4rehN-YcQ0wgwqx8kp2gHJFFXuLq6fGM4PPsRQj3EBKEaXGS_V6CCy60keDKGSlGwz1YDoN3XHQgOrDsnR86NwZwrcUnacDeahF1KwPgtgW3ndQevJfC2RD9mG6cnctWfgqRG6OtBHsXeQh67H99-35po_SCGx5lC37-SJlrvdttDmBteZPoO7DRd11K76VXzvfcCgnWSVj0TvDUcYpagI-p3IPdQbf8z4Ozkhs5U_qL_CfvFGCp12ZqvTtMvYzdZNTo0-LmLHumuAny5d_9NPtwsb5dbRbb3bvL1XK7GAjMy0WOG0UVRnmDc8VhQSiqSMMobRSDlBFVUEbbvFKMVmVRsVIKVCnKacV5QQpITrM3j33TTD-PMsS610FIY7iVaaw1LiGDuCwRS-jr_9B7N3qb1CWKIUpzUsxU9Uh9Tb821YPXPfdTjWA9u6CeXVAfXVDfXG23x4g8AKUzsug</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Dasgupta, Basundhara</creator><creator>Hausmann, Jan Niklas</creator><creator>Beltrán‐Suito, Rodrigo</creator><creator>Kalra, Shweta</creator><creator>Laun, Konstantin</creator><creator>Zebger, Ingo</creator><creator>Driess, Matthias</creator><creator>Menezes, Prashanth Wilfred</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0665-7690</orcidid></search><sort><creationdate>20230801</creationdate><title>A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium‐Intercalated γ‐NiOOHx Enabling High‐Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5‐Hydroxymethylfurfural</title><author>Dasgupta, Basundhara ; Hausmann, Jan Niklas ; Beltrán‐Suito, Rodrigo ; Kalra, Shweta ; Laun, Konstantin ; Zebger, Ingo ; Driess, Matthias ; Menezes, Prashanth Wilfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3068-62bf4f216b26fa0734193b544bf50453f7454d69f54987958ec19f4a49aa73703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>amorphous‐crystalline</topic><topic>Chemical synthesis</topic><topic>Current density</topic><topic>gamma γ‐nickel oxyhydroxide</topic><topic>Group 5A compounds</topic><topic>High current</topic><topic>High temperature</topic><topic>Hydroxymethylfurfural</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>nickel arsenide</topic><topic>nickel phosphide</topic><topic>organic oxidation</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Potassium</topic><topic>Reconstruction</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dasgupta, Basundhara</creatorcontrib><creatorcontrib>Hausmann, Jan Niklas</creatorcontrib><creatorcontrib>Beltrán‐Suito, Rodrigo</creatorcontrib><creatorcontrib>Kalra, Shweta</creatorcontrib><creatorcontrib>Laun, Konstantin</creatorcontrib><creatorcontrib>Zebger, Ingo</creatorcontrib><creatorcontrib>Driess, Matthias</creatorcontrib><creatorcontrib>Menezes, Prashanth Wilfred</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dasgupta, Basundhara</au><au>Hausmann, Jan Niklas</au><au>Beltrán‐Suito, Rodrigo</au><au>Kalra, Shweta</au><au>Laun, Konstantin</au><au>Zebger, Ingo</au><au>Driess, Matthias</au><au>Menezes, Prashanth Wilfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium‐Intercalated γ‐NiOOHx Enabling High‐Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5‐Hydroxymethylfurfural</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>33</issue><spage>e2301258</spage><epage>n/a</epage><pages>e2301258-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The low‐temperature molecular precursor approach can be beneficial to conventional solid‐state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single‐step, room‐temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)n and NiBr2(thf)1.5. During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ‐NiOOH) comprising edge‐sharing (NiO6) layers with intercalated potassium ions and a d‐spacing of 7.27 Å. Remarkably, the intercalated γ‐NiOOHx phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ‐NiOOHx can effectively catalyse the OER for 100 h at a high current density (400 mA cm−2) and achieves outstandingly high current densities (&gt;600 mA cm−2) for the selective, value‐added oxidation of 5‐hydroxymethylfurfural (HMF). The NiP‐derived γ‐NiOOHx shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room‐temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition‐metal pnictides. A room‐temperature synthesis of amorphous nickel pnictide precatalysts from NaOCE (EP, As) is reported to achieve efficient performance towards the oxygen evolution reaction (OER) and 5‐hydroxymethylfurfural oxidation. In situ and ex situ methods reveal a complete reconstruction of both amorphous NiE materials into nanocrystalline, potassium‐intercalated γ‐NiOOHx active phases under OER conditions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202301258</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0665-7690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-08, Vol.19 (33), p.e2301258-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2805028815
source Wiley Online Library - AutoHoldings Journals
subjects amorphous‐crystalline
Chemical synthesis
Current density
gamma γ‐nickel oxyhydroxide
Group 5A compounds
High current
High temperature
Hydroxymethylfurfural
Nanomaterials
Nanotechnology
Nickel
nickel arsenide
nickel phosphide
organic oxidation
Oxidation
oxygen evolution reaction
Oxygen evolution reactions
Potassium
Reconstruction
Temperature
title A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium‐Intercalated γ‐NiOOHx Enabling High‐Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5‐Hydroxymethylfurfural
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Facile%20Molecular%20Approach%20to%20Amorphous%20Nickel%20Pnictides%20and%20Their%20Reconstruction%20to%20Crystalline%20Potassium%E2%80%90Intercalated%20%CE%B3%E2%80%90NiOOHx%20Enabling%20High%E2%80%90Performance%20Electrocatalytic%20Water%20Oxidation%20and%20Selective%20Oxidation%20of%205%E2%80%90Hydroxymethylfurfural&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dasgupta,%20Basundhara&rft.date=2023-08-01&rft.volume=19&rft.issue=33&rft.spage=e2301258&rft.epage=n/a&rft.pages=e2301258-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202301258&rft_dat=%3Cproquest_wiley%3E2851446375%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851446375&rft_id=info:pmid/&rfr_iscdi=true