Microglia enable cross-modal plasticity by removing inhibitory synapses

Cross-modal plasticity is the repurposing of brain regions associated with deprived sensory inputs to improve the capacity of other sensory modalities. The functional mechanisms of cross-modal plasticity can indicate how the brain recovers from various forms of injury and how different sensory modal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2023-05, Vol.42 (5), p.112383-112383, Article 112383
Hauptverfasser: Hashimoto, Akari, Kawamura, Nanami, Tarusawa, Etsuko, Takeda, Ikuko, Aoyama, Yuki, Ohno, Nobuhiko, Inoue, Mio, Kagamiuchi, Mai, Kato, Daisuke, Matsumoto, Mami, Hasegawa, Yoshihiro, Nabekura, Junichi, Schaefer, Anne, Moorhouse, Andrew J., Yagi, Takeshi, Wake, Hiroaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112383
container_issue 5
container_start_page 112383
container_title Cell reports (Cambridge)
container_volume 42
creator Hashimoto, Akari
Kawamura, Nanami
Tarusawa, Etsuko
Takeda, Ikuko
Aoyama, Yuki
Ohno, Nobuhiko
Inoue, Mio
Kagamiuchi, Mai
Kato, Daisuke
Matsumoto, Mami
Hasegawa, Yoshihiro
Nabekura, Junichi
Schaefer, Anne
Moorhouse, Andrew J.
Yagi, Takeshi
Wake, Hiroaki
description Cross-modal plasticity is the repurposing of brain regions associated with deprived sensory inputs to improve the capacity of other sensory modalities. The functional mechanisms of cross-modal plasticity can indicate how the brain recovers from various forms of injury and how different sensory modalities are integrated. Here, we demonstrate that rewiring of the microglia-mediated local circuit synapse is crucial for cross-modal plasticity induced by visual deprivation (monocular deprivation [MD]). MD relieves the usual inhibition of functional connectivity between the somatosensory cortex and secondary lateral visual cortex (V2L). This results in enhanced excitatory responses in V2L neurons during whisker stimulation and a greater capacity for vibrissae sensory discrimination. The enhanced cross-modal response is mediated by selective removal of inhibitory synapse terminals on pyramidal neurons by the microglia in the V2L via matrix metalloproteinase 9 signaling. Our results provide insights into how cortical circuits integrate different inputs to functionally compensate for neuronal damage. [Display omitted] •Monocular deprivation in mice results in enhanced somatosensory discrimination•Visual deprivation increases visual cortex (V2L) excitability during whisker stimulation•Microglia phagocytose local inhibitory synapses to unmask cross-modal plasticity•Matrix metalloproteinase 9 activity in V2L is required for cross-modal plasticity Hashimoto et al. demonstrate that microglia are required for cross-modal plasticity after monocular deprivation. Through metalloprotease-dependent phagocytosis of inhibitory inputs, microglia enhance visual cortex excitability during whisker stimulation to enhance somatosensory discrimination ability. These results provide mechanisms for neural plasticity that can mediate behavioral adaptations following sensory loss.
doi_str_mv 10.1016/j.celrep.2023.112383
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805025612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124723003947</els_id><sourcerecordid>2805025612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-3148cefdeff419384800a8d9c1c6f625567cb218366f8633f465a8d3dc9e51a93</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYtPYP0CoRy4tcdKm6QUJTTCQhrjAOUpTd2TqF0k3qf-ejgLihC-25dd-5YeQS6ARUBA3u8hg5bCLGGU8AmBc8hMyZwwgBBanp3_qGVl6v6NjCAqQxedkxlMqRcriOVk_W-PabWV1gI3OKwzG1vuwbgtdBV2lfW-N7YcgHwKHdXuwzTawzbvNbd-6IfBDozuP_oKclbryuPzOC_L2cP-6egw3L-un1d0mNAnIPuQQS4NlgWUZQ8ZlLCnVssgMGFEKliQiNTkDyYUopeC8jEUyznlhMkxAZ3xBrqe7nWs_9uh7VVs_sqh0g-3eKyZpQlkiRiILEk_Sr48clqpzttZuUEDVkaLaqYmiOlJUE8Vx7erbYZ_XWPwu_TAbBbeTAMc_Dxad8sZiY7CwDk2vitb-7_AJazaEkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805025612</pqid></control><display><type>article</type><title>Microglia enable cross-modal plasticity by removing inhibitory synapses</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hashimoto, Akari ; Kawamura, Nanami ; Tarusawa, Etsuko ; Takeda, Ikuko ; Aoyama, Yuki ; Ohno, Nobuhiko ; Inoue, Mio ; Kagamiuchi, Mai ; Kato, Daisuke ; Matsumoto, Mami ; Hasegawa, Yoshihiro ; Nabekura, Junichi ; Schaefer, Anne ; Moorhouse, Andrew J. ; Yagi, Takeshi ; Wake, Hiroaki</creator><creatorcontrib>Hashimoto, Akari ; Kawamura, Nanami ; Tarusawa, Etsuko ; Takeda, Ikuko ; Aoyama, Yuki ; Ohno, Nobuhiko ; Inoue, Mio ; Kagamiuchi, Mai ; Kato, Daisuke ; Matsumoto, Mami ; Hasegawa, Yoshihiro ; Nabekura, Junichi ; Schaefer, Anne ; Moorhouse, Andrew J. ; Yagi, Takeshi ; Wake, Hiroaki</creatorcontrib><description>Cross-modal plasticity is the repurposing of brain regions associated with deprived sensory inputs to improve the capacity of other sensory modalities. The functional mechanisms of cross-modal plasticity can indicate how the brain recovers from various forms of injury and how different sensory modalities are integrated. Here, we demonstrate that rewiring of the microglia-mediated local circuit synapse is crucial for cross-modal plasticity induced by visual deprivation (monocular deprivation [MD]). MD relieves the usual inhibition of functional connectivity between the somatosensory cortex and secondary lateral visual cortex (V2L). This results in enhanced excitatory responses in V2L neurons during whisker stimulation and a greater capacity for vibrissae sensory discrimination. The enhanced cross-modal response is mediated by selective removal of inhibitory synapse terminals on pyramidal neurons by the microglia in the V2L via matrix metalloproteinase 9 signaling. Our results provide insights into how cortical circuits integrate different inputs to functionally compensate for neuronal damage. [Display omitted] •Monocular deprivation in mice results in enhanced somatosensory discrimination•Visual deprivation increases visual cortex (V2L) excitability during whisker stimulation•Microglia phagocytose local inhibitory synapses to unmask cross-modal plasticity•Matrix metalloproteinase 9 activity in V2L is required for cross-modal plasticity Hashimoto et al. demonstrate that microglia are required for cross-modal plasticity after monocular deprivation. Through metalloprotease-dependent phagocytosis of inhibitory inputs, microglia enhance visual cortex excitability during whisker stimulation to enhance somatosensory discrimination ability. These results provide mechanisms for neural plasticity that can mediate behavioral adaptations following sensory loss.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2023.112383</identifier><identifier>PMID: 37086724</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; cross-modal plasticity ; glia-neuron interaction ; inhibitory synapses ; matrix metalloproteinase 9 ; Microglia ; Neuronal Plasticity - physiology ; Neurons - physiology ; Pyramidal Cells ; sensory deprivation ; Somatosensory Cortex - physiology ; Synapses - physiology ; Vibrissae - physiology ; Visual Cortex - physiology</subject><ispartof>Cell reports (Cambridge), 2023-05, Vol.42 (5), p.112383-112383, Article 112383</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-3148cefdeff419384800a8d9c1c6f625567cb218366f8633f465a8d3dc9e51a93</citedby><cites>FETCH-LOGICAL-c518t-3148cefdeff419384800a8d9c1c6f625567cb218366f8633f465a8d3dc9e51a93</cites><orcidid>0000-0002-8543-4590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37086724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hashimoto, Akari</creatorcontrib><creatorcontrib>Kawamura, Nanami</creatorcontrib><creatorcontrib>Tarusawa, Etsuko</creatorcontrib><creatorcontrib>Takeda, Ikuko</creatorcontrib><creatorcontrib>Aoyama, Yuki</creatorcontrib><creatorcontrib>Ohno, Nobuhiko</creatorcontrib><creatorcontrib>Inoue, Mio</creatorcontrib><creatorcontrib>Kagamiuchi, Mai</creatorcontrib><creatorcontrib>Kato, Daisuke</creatorcontrib><creatorcontrib>Matsumoto, Mami</creatorcontrib><creatorcontrib>Hasegawa, Yoshihiro</creatorcontrib><creatorcontrib>Nabekura, Junichi</creatorcontrib><creatorcontrib>Schaefer, Anne</creatorcontrib><creatorcontrib>Moorhouse, Andrew J.</creatorcontrib><creatorcontrib>Yagi, Takeshi</creatorcontrib><creatorcontrib>Wake, Hiroaki</creatorcontrib><title>Microglia enable cross-modal plasticity by removing inhibitory synapses</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Cross-modal plasticity is the repurposing of brain regions associated with deprived sensory inputs to improve the capacity of other sensory modalities. The functional mechanisms of cross-modal plasticity can indicate how the brain recovers from various forms of injury and how different sensory modalities are integrated. Here, we demonstrate that rewiring of the microglia-mediated local circuit synapse is crucial for cross-modal plasticity induced by visual deprivation (monocular deprivation [MD]). MD relieves the usual inhibition of functional connectivity between the somatosensory cortex and secondary lateral visual cortex (V2L). This results in enhanced excitatory responses in V2L neurons during whisker stimulation and a greater capacity for vibrissae sensory discrimination. The enhanced cross-modal response is mediated by selective removal of inhibitory synapse terminals on pyramidal neurons by the microglia in the V2L via matrix metalloproteinase 9 signaling. Our results provide insights into how cortical circuits integrate different inputs to functionally compensate for neuronal damage. [Display omitted] •Monocular deprivation in mice results in enhanced somatosensory discrimination•Visual deprivation increases visual cortex (V2L) excitability during whisker stimulation•Microglia phagocytose local inhibitory synapses to unmask cross-modal plasticity•Matrix metalloproteinase 9 activity in V2L is required for cross-modal plasticity Hashimoto et al. demonstrate that microglia are required for cross-modal plasticity after monocular deprivation. Through metalloprotease-dependent phagocytosis of inhibitory inputs, microglia enhance visual cortex excitability during whisker stimulation to enhance somatosensory discrimination ability. These results provide mechanisms for neural plasticity that can mediate behavioral adaptations following sensory loss.</description><subject>Animals</subject><subject>cross-modal plasticity</subject><subject>glia-neuron interaction</subject><subject>inhibitory synapses</subject><subject>matrix metalloproteinase 9</subject><subject>Microglia</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Pyramidal Cells</subject><subject>sensory deprivation</subject><subject>Somatosensory Cortex - physiology</subject><subject>Synapses - physiology</subject><subject>Vibrissae - physiology</subject><subject>Visual Cortex - physiology</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PwzAMhiMEYtPYP0CoRy4tcdKm6QUJTTCQhrjAOUpTd2TqF0k3qf-ejgLihC-25dd-5YeQS6ARUBA3u8hg5bCLGGU8AmBc8hMyZwwgBBanp3_qGVl6v6NjCAqQxedkxlMqRcriOVk_W-PabWV1gI3OKwzG1vuwbgtdBV2lfW-N7YcgHwKHdXuwzTawzbvNbd-6IfBDozuP_oKclbryuPzOC_L2cP-6egw3L-un1d0mNAnIPuQQS4NlgWUZQ8ZlLCnVssgMGFEKliQiNTkDyYUopeC8jEUyznlhMkxAZ3xBrqe7nWs_9uh7VVs_sqh0g-3eKyZpQlkiRiILEk_Sr48clqpzttZuUEDVkaLaqYmiOlJUE8Vx7erbYZ_XWPwu_TAbBbeTAMc_Dxad8sZiY7CwDk2vitb-7_AJazaEkg</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Hashimoto, Akari</creator><creator>Kawamura, Nanami</creator><creator>Tarusawa, Etsuko</creator><creator>Takeda, Ikuko</creator><creator>Aoyama, Yuki</creator><creator>Ohno, Nobuhiko</creator><creator>Inoue, Mio</creator><creator>Kagamiuchi, Mai</creator><creator>Kato, Daisuke</creator><creator>Matsumoto, Mami</creator><creator>Hasegawa, Yoshihiro</creator><creator>Nabekura, Junichi</creator><creator>Schaefer, Anne</creator><creator>Moorhouse, Andrew J.</creator><creator>Yagi, Takeshi</creator><creator>Wake, Hiroaki</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8543-4590</orcidid></search><sort><creationdate>20230530</creationdate><title>Microglia enable cross-modal plasticity by removing inhibitory synapses</title><author>Hashimoto, Akari ; Kawamura, Nanami ; Tarusawa, Etsuko ; Takeda, Ikuko ; Aoyama, Yuki ; Ohno, Nobuhiko ; Inoue, Mio ; Kagamiuchi, Mai ; Kato, Daisuke ; Matsumoto, Mami ; Hasegawa, Yoshihiro ; Nabekura, Junichi ; Schaefer, Anne ; Moorhouse, Andrew J. ; Yagi, Takeshi ; Wake, Hiroaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-3148cefdeff419384800a8d9c1c6f625567cb218366f8633f465a8d3dc9e51a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>cross-modal plasticity</topic><topic>glia-neuron interaction</topic><topic>inhibitory synapses</topic><topic>matrix metalloproteinase 9</topic><topic>Microglia</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Pyramidal Cells</topic><topic>sensory deprivation</topic><topic>Somatosensory Cortex - physiology</topic><topic>Synapses - physiology</topic><topic>Vibrissae - physiology</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashimoto, Akari</creatorcontrib><creatorcontrib>Kawamura, Nanami</creatorcontrib><creatorcontrib>Tarusawa, Etsuko</creatorcontrib><creatorcontrib>Takeda, Ikuko</creatorcontrib><creatorcontrib>Aoyama, Yuki</creatorcontrib><creatorcontrib>Ohno, Nobuhiko</creatorcontrib><creatorcontrib>Inoue, Mio</creatorcontrib><creatorcontrib>Kagamiuchi, Mai</creatorcontrib><creatorcontrib>Kato, Daisuke</creatorcontrib><creatorcontrib>Matsumoto, Mami</creatorcontrib><creatorcontrib>Hasegawa, Yoshihiro</creatorcontrib><creatorcontrib>Nabekura, Junichi</creatorcontrib><creatorcontrib>Schaefer, Anne</creatorcontrib><creatorcontrib>Moorhouse, Andrew J.</creatorcontrib><creatorcontrib>Yagi, Takeshi</creatorcontrib><creatorcontrib>Wake, Hiroaki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashimoto, Akari</au><au>Kawamura, Nanami</au><au>Tarusawa, Etsuko</au><au>Takeda, Ikuko</au><au>Aoyama, Yuki</au><au>Ohno, Nobuhiko</au><au>Inoue, Mio</au><au>Kagamiuchi, Mai</au><au>Kato, Daisuke</au><au>Matsumoto, Mami</au><au>Hasegawa, Yoshihiro</au><au>Nabekura, Junichi</au><au>Schaefer, Anne</au><au>Moorhouse, Andrew J.</au><au>Yagi, Takeshi</au><au>Wake, Hiroaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microglia enable cross-modal plasticity by removing inhibitory synapses</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2023-05-30</date><risdate>2023</risdate><volume>42</volume><issue>5</issue><spage>112383</spage><epage>112383</epage><pages>112383-112383</pages><artnum>112383</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Cross-modal plasticity is the repurposing of brain regions associated with deprived sensory inputs to improve the capacity of other sensory modalities. The functional mechanisms of cross-modal plasticity can indicate how the brain recovers from various forms of injury and how different sensory modalities are integrated. Here, we demonstrate that rewiring of the microglia-mediated local circuit synapse is crucial for cross-modal plasticity induced by visual deprivation (monocular deprivation [MD]). MD relieves the usual inhibition of functional connectivity between the somatosensory cortex and secondary lateral visual cortex (V2L). This results in enhanced excitatory responses in V2L neurons during whisker stimulation and a greater capacity for vibrissae sensory discrimination. The enhanced cross-modal response is mediated by selective removal of inhibitory synapse terminals on pyramidal neurons by the microglia in the V2L via matrix metalloproteinase 9 signaling. Our results provide insights into how cortical circuits integrate different inputs to functionally compensate for neuronal damage. [Display omitted] •Monocular deprivation in mice results in enhanced somatosensory discrimination•Visual deprivation increases visual cortex (V2L) excitability during whisker stimulation•Microglia phagocytose local inhibitory synapses to unmask cross-modal plasticity•Matrix metalloproteinase 9 activity in V2L is required for cross-modal plasticity Hashimoto et al. demonstrate that microglia are required for cross-modal plasticity after monocular deprivation. Through metalloprotease-dependent phagocytosis of inhibitory inputs, microglia enhance visual cortex excitability during whisker stimulation to enhance somatosensory discrimination ability. These results provide mechanisms for neural plasticity that can mediate behavioral adaptations following sensory loss.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37086724</pmid><doi>10.1016/j.celrep.2023.112383</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8543-4590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2023-05, Vol.42 (5), p.112383-112383, Article 112383
issn 2211-1247
2211-1247
language eng
recordid cdi_proquest_miscellaneous_2805025612
source MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
cross-modal plasticity
glia-neuron interaction
inhibitory synapses
matrix metalloproteinase 9
Microglia
Neuronal Plasticity - physiology
Neurons - physiology
Pyramidal Cells
sensory deprivation
Somatosensory Cortex - physiology
Synapses - physiology
Vibrissae - physiology
Visual Cortex - physiology
title Microglia enable cross-modal plasticity by removing inhibitory synapses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microglia%20enable%20cross-modal%20plasticity%20by%20removing%20inhibitory%20synapses&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Hashimoto,%20Akari&rft.date=2023-05-30&rft.volume=42&rft.issue=5&rft.spage=112383&rft.epage=112383&rft.pages=112383-112383&rft.artnum=112383&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2023.112383&rft_dat=%3Cproquest_cross%3E2805025612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805025612&rft_id=info:pmid/37086724&rft_els_id=S2211124723003947&rfr_iscdi=true