Illuminating the structure-function landscape of an evolutionary nonconserved motif in the arginases of Helicobacter gastric pathogens

The bimetallic enzyme arginase catalyses the conversion of L-arginine to L-ornithine and urea. In Helicobacter pylori (a known human gastric pathogen), this enzyme is an important virulence factor. In spite of the conservation of the catalytic and the metal-binding residues, the H. pylori homolog po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IUBMB life 2023-10, Vol.75 (10), p.782-793
Hauptverfasser: Sarkar, Ditsa, Sau, Apurba Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 793
container_issue 10
container_start_page 782
container_title IUBMB life
container_volume 75
creator Sarkar, Ditsa
Sau, Apurba Kumar
description The bimetallic enzyme arginase catalyses the conversion of L-arginine to L-ornithine and urea. In Helicobacter pylori (a known human gastric pathogen), this enzyme is an important virulence factor. In spite of the conservation of the catalytic and the metal-binding residues, the H. pylori homolog possesses a 13-residue motif (- ESEEKAWQKLCSL -) present in the middle of the protein sequence, whose role was recently elucidated. Despite several reviews available on arginases, no report has thoroughly illustrated the underlying basis for the importance of the above motif of the H. pylori enzyme in structure and function. In this review, we systematically describe a mechanistic basis for its importance in structure and function based on the known data. This motif of the H. pylori enzyme is present exclusively in the arginases of other Helicobacter gastric pathogens, where the critical residues are conserved, implying that the nonconserved stretch has been selected during the evolution of the enzyme in these gastric pathogens in a specific manner to perform its role in the structure and function. The combined information can be useful for understanding the function of arginases in other Helicobacter gastric pathogens. Additionally, this knowledge can be utilised to screen and design new small molecule inhibitors, specific to the arginases of these pathogens.
doi_str_mv 10.1002/iub.2728
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805025502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805025502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-70f048080ca4c25b36b2b3ef96903c2367f54d5e9318e9a66be05bc2902e788b3</originalsourceid><addsrcrecordid>eNpdkd9KBCEUhyWKdtuCniCEbrqZcnR0Zi5jqTYIuqnrQd0zmzGjm3-CXqDnzq1tgwRR8PM7Hn8InZbksiSEXpmkLmlNmz00LTktC8F5ub_bV2yCjkJ4JXnUpD1EE1aTRlSCT9Hn_TCk0VgZjV3h-AI4RJ90TB6KPlkdjbN4kHYZtFwDdj2WFsO7G9LmRPoPbJ3Vzgbw77DEo4umx8Z-m6RfZXGAsLm2gMFop6SO4PFK5ipG47WML24FNhyjg14OAU626ww93948zRfFw-Pd_fz6odC5vVjUpCdVQxqiZaUpV0woqhj0rWgJ05SJuufVkkPLygZaKYQCwpWmLaFQN41iM3Tx411795YgxG40QcOQOwSXQkcbwgnleWb0_B_66pK3-XWZEhUtqRD1n1B7F4KHvlt7M-Z_6UrSbbLpcjbdJpuMnm2FSY2w3IG_YbAvYc6LxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864212667</pqid></control><display><type>article</type><title>Illuminating the structure-function landscape of an evolutionary nonconserved motif in the arginases of Helicobacter gastric pathogens</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sarkar, Ditsa ; Sau, Apurba Kumar</creator><creatorcontrib>Sarkar, Ditsa ; Sau, Apurba Kumar</creatorcontrib><description>The bimetallic enzyme arginase catalyses the conversion of L-arginine to L-ornithine and urea. In Helicobacter pylori (a known human gastric pathogen), this enzyme is an important virulence factor. In spite of the conservation of the catalytic and the metal-binding residues, the H. pylori homolog possesses a 13-residue motif (- ESEEKAWQKLCSL -) present in the middle of the protein sequence, whose role was recently elucidated. Despite several reviews available on arginases, no report has thoroughly illustrated the underlying basis for the importance of the above motif of the H. pylori enzyme in structure and function. In this review, we systematically describe a mechanistic basis for its importance in structure and function based on the known data. This motif of the H. pylori enzyme is present exclusively in the arginases of other Helicobacter gastric pathogens, where the critical residues are conserved, implying that the nonconserved stretch has been selected during the evolution of the enzyme in these gastric pathogens in a specific manner to perform its role in the structure and function. The combined information can be useful for understanding the function of arginases in other Helicobacter gastric pathogens. Additionally, this knowledge can be utilised to screen and design new small molecule inhibitors, specific to the arginases of these pathogens.</description><identifier>ISSN: 1521-6543</identifier><identifier>EISSN: 1521-6551</identifier><identifier>DOI: 10.1002/iub.2728</identifier><identifier>PMID: 37086465</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Amino acid sequence ; Arginase ; Enzymes ; Helicobacter ; Ornithine ; Pathogens ; Structure-function relationships ; Virulence factors</subject><ispartof>IUBMB life, 2023-10, Vol.75 (10), p.782-793</ispartof><rights>2023 International Union of Biochemistry and Molecular Biology.</rights><rights>2023 International Union of Biochemistry and Molecular Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-70f048080ca4c25b36b2b3ef96903c2367f54d5e9318e9a66be05bc2902e788b3</cites><orcidid>0000-0002-5909-9442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37086465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkar, Ditsa</creatorcontrib><creatorcontrib>Sau, Apurba Kumar</creatorcontrib><title>Illuminating the structure-function landscape of an evolutionary nonconserved motif in the arginases of Helicobacter gastric pathogens</title><title>IUBMB life</title><addtitle>IUBMB Life</addtitle><description>The bimetallic enzyme arginase catalyses the conversion of L-arginine to L-ornithine and urea. In Helicobacter pylori (a known human gastric pathogen), this enzyme is an important virulence factor. In spite of the conservation of the catalytic and the metal-binding residues, the H. pylori homolog possesses a 13-residue motif (- ESEEKAWQKLCSL -) present in the middle of the protein sequence, whose role was recently elucidated. Despite several reviews available on arginases, no report has thoroughly illustrated the underlying basis for the importance of the above motif of the H. pylori enzyme in structure and function. In this review, we systematically describe a mechanistic basis for its importance in structure and function based on the known data. This motif of the H. pylori enzyme is present exclusively in the arginases of other Helicobacter gastric pathogens, where the critical residues are conserved, implying that the nonconserved stretch has been selected during the evolution of the enzyme in these gastric pathogens in a specific manner to perform its role in the structure and function. The combined information can be useful for understanding the function of arginases in other Helicobacter gastric pathogens. Additionally, this knowledge can be utilised to screen and design new small molecule inhibitors, specific to the arginases of these pathogens.</description><subject>Amino acid sequence</subject><subject>Arginase</subject><subject>Enzymes</subject><subject>Helicobacter</subject><subject>Ornithine</subject><subject>Pathogens</subject><subject>Structure-function relationships</subject><subject>Virulence factors</subject><issn>1521-6543</issn><issn>1521-6551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkd9KBCEUhyWKdtuCniCEbrqZcnR0Zi5jqTYIuqnrQd0zmzGjm3-CXqDnzq1tgwRR8PM7Hn8InZbksiSEXpmkLmlNmz00LTktC8F5ub_bV2yCjkJ4JXnUpD1EE1aTRlSCT9Hn_TCk0VgZjV3h-AI4RJ90TB6KPlkdjbN4kHYZtFwDdj2WFsO7G9LmRPoPbJ3Vzgbw77DEo4umx8Z-m6RfZXGAsLm2gMFop6SO4PFK5ipG47WML24FNhyjg14OAU626ww93948zRfFw-Pd_fz6odC5vVjUpCdVQxqiZaUpV0woqhj0rWgJ05SJuufVkkPLygZaKYQCwpWmLaFQN41iM3Tx411795YgxG40QcOQOwSXQkcbwgnleWb0_B_66pK3-XWZEhUtqRD1n1B7F4KHvlt7M-Z_6UrSbbLpcjbdJpuMnm2FSY2w3IG_YbAvYc6LxQ</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Sarkar, Ditsa</creator><creator>Sau, Apurba Kumar</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5909-9442</orcidid></search><sort><creationdate>20231001</creationdate><title>Illuminating the structure-function landscape of an evolutionary nonconserved motif in the arginases of Helicobacter gastric pathogens</title><author>Sarkar, Ditsa ; Sau, Apurba Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-70f048080ca4c25b36b2b3ef96903c2367f54d5e9318e9a66be05bc2902e788b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acid sequence</topic><topic>Arginase</topic><topic>Enzymes</topic><topic>Helicobacter</topic><topic>Ornithine</topic><topic>Pathogens</topic><topic>Structure-function relationships</topic><topic>Virulence factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Ditsa</creatorcontrib><creatorcontrib>Sau, Apurba Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IUBMB life</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Ditsa</au><au>Sau, Apurba Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illuminating the structure-function landscape of an evolutionary nonconserved motif in the arginases of Helicobacter gastric pathogens</atitle><jtitle>IUBMB life</jtitle><addtitle>IUBMB Life</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>75</volume><issue>10</issue><spage>782</spage><epage>793</epage><pages>782-793</pages><issn>1521-6543</issn><eissn>1521-6551</eissn><abstract>The bimetallic enzyme arginase catalyses the conversion of L-arginine to L-ornithine and urea. In Helicobacter pylori (a known human gastric pathogen), this enzyme is an important virulence factor. In spite of the conservation of the catalytic and the metal-binding residues, the H. pylori homolog possesses a 13-residue motif (- ESEEKAWQKLCSL -) present in the middle of the protein sequence, whose role was recently elucidated. Despite several reviews available on arginases, no report has thoroughly illustrated the underlying basis for the importance of the above motif of the H. pylori enzyme in structure and function. In this review, we systematically describe a mechanistic basis for its importance in structure and function based on the known data. This motif of the H. pylori enzyme is present exclusively in the arginases of other Helicobacter gastric pathogens, where the critical residues are conserved, implying that the nonconserved stretch has been selected during the evolution of the enzyme in these gastric pathogens in a specific manner to perform its role in the structure and function. The combined information can be useful for understanding the function of arginases in other Helicobacter gastric pathogens. Additionally, this knowledge can be utilised to screen and design new small molecule inhibitors, specific to the arginases of these pathogens.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37086465</pmid><doi>10.1002/iub.2728</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5909-9442</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1521-6543
ispartof IUBMB life, 2023-10, Vol.75 (10), p.782-793
issn 1521-6543
1521-6551
language eng
recordid cdi_proquest_miscellaneous_2805025502
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete
subjects Amino acid sequence
Arginase
Enzymes
Helicobacter
Ornithine
Pathogens
Structure-function relationships
Virulence factors
title Illuminating the structure-function landscape of an evolutionary nonconserved motif in the arginases of Helicobacter gastric pathogens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illuminating%20the%20structure-function%20landscape%20of%20an%20evolutionary%20nonconserved%20motif%20in%20the%20arginases%20of%20Helicobacter%20gastric%20pathogens&rft.jtitle=IUBMB%20life&rft.au=Sarkar,%20Ditsa&rft.date=2023-10-01&rft.volume=75&rft.issue=10&rft.spage=782&rft.epage=793&rft.pages=782-793&rft.issn=1521-6543&rft.eissn=1521-6551&rft_id=info:doi/10.1002/iub.2728&rft_dat=%3Cproquest_cross%3E2805025502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864212667&rft_id=info:pmid/37086465&rfr_iscdi=true