A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation
One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi‐functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gela...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2023-09, Vol.23 (9), p.e2300096-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | e2300096 |
container_title | Macromolecular bioscience |
container_volume | 23 |
creator | Dutta, Sayan Deb Ganguly, Keya Hexiu, Jin Randhawa, Aayushi Moniruzzaman, Md Lim, Ki‐Taek |
description | One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi‐functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti‐tumor therapy. The CQDs are synthesized from a plant‐inspired bioactive molecule, 1, 3, 5‐trihydroxybenzene. The 3D printed GelMA‐CQDs hydrogels display typical shear‐thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti‐inflammatory genes (e.g., IL‐4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel‐like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra‐red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA‐CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.
This work demonstrates using polyphenolic carbon quantum dots embedded in 3D bioprinted hydrogels with multi‐faceted applications. The dynamic M2 macrophage polarization and light‐controlled drug delivery synergistically promote bone regeneration via controlled osteosarcoma eradication and osteoblast differentiation. |
doi_str_mv | 10.1002/mabi.202300096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805025364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805025364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4136-3b001b5fd603936be47ce18d472b3b21eaa05f3d28dd668af995fd285f6768d43</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EoqVw5YgsceGyW_9JHOe42wW6UlsQlHPkxJOsq9hO7WSr_TZ8VLxsu0hcehmP5Z-f3sxD6D0lc0oIO7eqNnNGGCeElOIFOqWCillOy_zlsZfFCXoT4x0htJAle41OeEFkISQ9Rb8XmK_w0vghGDeCxjfKeXCdcQAhXS93OvgOevxgxg3-vvGjV81otmrPrsLU4RX0Zgthh1sf8O1kU10Mfhh9NBErp_FPY6d-VA78FPHSO8A_oAMHQY3GO7w1Cl-rJvhhozrAa2sn563XU__3_S161ao-wrvH8wz9-vL59uJydvXt6_picTVrMsrFjNdpujpvtSC85KKGrGiASp0VrOY1o6AUyVuumdRaCKnaskwwk3kr0iJ0xs_Qp4PuEPz9BHGsrIkN9P3BeMUkyQnLudijH_9D7_wUXHKXKJFJKpmUiZofqDRajAHaKq3YqrCrKKn22VX77KpjdunDh0fZqbagj_hTWAkoD8CD6WH3jFx1vViu_4n_AXMOqFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864818288</pqid></control><display><type>article</type><title>A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dutta, Sayan Deb ; Ganguly, Keya ; Hexiu, Jin ; Randhawa, Aayushi ; Moniruzzaman, Md ; Lim, Ki‐Taek</creator><creatorcontrib>Dutta, Sayan Deb ; Ganguly, Keya ; Hexiu, Jin ; Randhawa, Aayushi ; Moniruzzaman, Md ; Lim, Ki‐Taek</creatorcontrib><description>One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi‐functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti‐tumor therapy. The CQDs are synthesized from a plant‐inspired bioactive molecule, 1, 3, 5‐trihydroxybenzene. The 3D printed GelMA‐CQDs hydrogels display typical shear‐thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti‐inflammatory genes (e.g., IL‐4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel‐like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra‐red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA‐CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.
This work demonstrates using polyphenolic carbon quantum dots embedded in 3D bioprinted hydrogels with multi‐faceted applications. The dynamic M2 macrophage polarization and light‐controlled drug delivery synergistically promote bone regeneration via controlled osteosarcoma eradication and osteoblast differentiation.</description><identifier>ISSN: 1616-5187</identifier><identifier>ISSN: 1616-5195</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202300096</identifier><identifier>PMID: 37087681</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Angiogenesis ; anti‐inflammatory ; Apoptosis ; Bone growth ; Bone healing ; Cancer therapies ; Controlled release ; Drug delivery ; Gelatin ; Healing ; Hydrogels ; Immunomodulation ; Inflammation ; Irradiation ; Macrophages ; Mesenchymal stem cells ; multifunctional hydrogel ; Osteogenesis ; osteoimmunity ; Osteosarcoma ; Osteosarcoma cells ; polyphenolic carbon quantum dots ; Quantum dots ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Stem cells ; Three dimensional printing ; Tissue engineering ; tumor ablation ; Tumors</subject><ispartof>Macromolecular bioscience, 2023-09, Vol.23 (9), p.e2300096-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4136-3b001b5fd603936be47ce18d472b3b21eaa05f3d28dd668af995fd285f6768d43</citedby><cites>FETCH-LOGICAL-c4136-3b001b5fd603936be47ce18d472b3b21eaa05f3d28dd668af995fd285f6768d43</cites><orcidid>0000-0003-2091-788X ; 0000-0002-7263-928X ; 0000-0001-9397-3140 ; 0000-0002-0235-6313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202300096$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202300096$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37087681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Sayan Deb</creatorcontrib><creatorcontrib>Ganguly, Keya</creatorcontrib><creatorcontrib>Hexiu, Jin</creatorcontrib><creatorcontrib>Randhawa, Aayushi</creatorcontrib><creatorcontrib>Moniruzzaman, Md</creatorcontrib><creatorcontrib>Lim, Ki‐Taek</creatorcontrib><title>A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi‐functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti‐tumor therapy. The CQDs are synthesized from a plant‐inspired bioactive molecule, 1, 3, 5‐trihydroxybenzene. The 3D printed GelMA‐CQDs hydrogels display typical shear‐thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti‐inflammatory genes (e.g., IL‐4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel‐like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra‐red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA‐CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.
This work demonstrates using polyphenolic carbon quantum dots embedded in 3D bioprinted hydrogels with multi‐faceted applications. The dynamic M2 macrophage polarization and light‐controlled drug delivery synergistically promote bone regeneration via controlled osteosarcoma eradication and osteoblast differentiation.</description><subject>Angiogenesis</subject><subject>anti‐inflammatory</subject><subject>Apoptosis</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Cancer therapies</subject><subject>Controlled release</subject><subject>Drug delivery</subject><subject>Gelatin</subject><subject>Healing</subject><subject>Hydrogels</subject><subject>Immunomodulation</subject><subject>Inflammation</subject><subject>Irradiation</subject><subject>Macrophages</subject><subject>Mesenchymal stem cells</subject><subject>multifunctional hydrogel</subject><subject>Osteogenesis</subject><subject>osteoimmunity</subject><subject>Osteosarcoma</subject><subject>Osteosarcoma cells</subject><subject>polyphenolic carbon quantum dots</subject><subject>Quantum dots</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>tumor ablation</subject><subject>Tumors</subject><issn>1616-5187</issn><issn>1616-5195</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EoqVw5YgsceGyW_9JHOe42wW6UlsQlHPkxJOsq9hO7WSr_TZ8VLxsu0hcehmP5Z-f3sxD6D0lc0oIO7eqNnNGGCeElOIFOqWCillOy_zlsZfFCXoT4x0htJAle41OeEFkISQ9Rb8XmK_w0vghGDeCxjfKeXCdcQAhXS93OvgOevxgxg3-vvGjV81otmrPrsLU4RX0Zgthh1sf8O1kU10Mfhh9NBErp_FPY6d-VA78FPHSO8A_oAMHQY3GO7w1Cl-rJvhhozrAa2sn563XU__3_S161ao-wrvH8wz9-vL59uJydvXt6_picTVrMsrFjNdpujpvtSC85KKGrGiASp0VrOY1o6AUyVuumdRaCKnaskwwk3kr0iJ0xs_Qp4PuEPz9BHGsrIkN9P3BeMUkyQnLudijH_9D7_wUXHKXKJFJKpmUiZofqDRajAHaKq3YqrCrKKn22VX77KpjdunDh0fZqbagj_hTWAkoD8CD6WH3jFx1vViu_4n_AXMOqFY</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Dutta, Sayan Deb</creator><creator>Ganguly, Keya</creator><creator>Hexiu, Jin</creator><creator>Randhawa, Aayushi</creator><creator>Moniruzzaman, Md</creator><creator>Lim, Ki‐Taek</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2091-788X</orcidid><orcidid>https://orcid.org/0000-0002-7263-928X</orcidid><orcidid>https://orcid.org/0000-0001-9397-3140</orcidid><orcidid>https://orcid.org/0000-0002-0235-6313</orcidid></search><sort><creationdate>202309</creationdate><title>A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation</title><author>Dutta, Sayan Deb ; Ganguly, Keya ; Hexiu, Jin ; Randhawa, Aayushi ; Moniruzzaman, Md ; Lim, Ki‐Taek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4136-3b001b5fd603936be47ce18d472b3b21eaa05f3d28dd668af995fd285f6768d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiogenesis</topic><topic>anti‐inflammatory</topic><topic>Apoptosis</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Cancer therapies</topic><topic>Controlled release</topic><topic>Drug delivery</topic><topic>Gelatin</topic><topic>Healing</topic><topic>Hydrogels</topic><topic>Immunomodulation</topic><topic>Inflammation</topic><topic>Irradiation</topic><topic>Macrophages</topic><topic>Mesenchymal stem cells</topic><topic>multifunctional hydrogel</topic><topic>Osteogenesis</topic><topic>osteoimmunity</topic><topic>Osteosarcoma</topic><topic>Osteosarcoma cells</topic><topic>polyphenolic carbon quantum dots</topic><topic>Quantum dots</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>tumor ablation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Sayan Deb</creatorcontrib><creatorcontrib>Ganguly, Keya</creatorcontrib><creatorcontrib>Hexiu, Jin</creatorcontrib><creatorcontrib>Randhawa, Aayushi</creatorcontrib><creatorcontrib>Moniruzzaman, Md</creatorcontrib><creatorcontrib>Lim, Ki‐Taek</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Sayan Deb</au><au>Ganguly, Keya</au><au>Hexiu, Jin</au><au>Randhawa, Aayushi</au><au>Moniruzzaman, Md</au><au>Lim, Ki‐Taek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2023-09</date><risdate>2023</risdate><volume>23</volume><issue>9</issue><spage>e2300096</spage><epage>n/a</epage><pages>e2300096-n/a</pages><issn>1616-5187</issn><issn>1616-5195</issn><eissn>1616-5195</eissn><abstract>One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi‐functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti‐tumor therapy. The CQDs are synthesized from a plant‐inspired bioactive molecule, 1, 3, 5‐trihydroxybenzene. The 3D printed GelMA‐CQDs hydrogels display typical shear‐thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti‐inflammatory genes (e.g., IL‐4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel‐like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra‐red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA‐CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.
This work demonstrates using polyphenolic carbon quantum dots embedded in 3D bioprinted hydrogels with multi‐faceted applications. The dynamic M2 macrophage polarization and light‐controlled drug delivery synergistically promote bone regeneration via controlled osteosarcoma eradication and osteoblast differentiation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37087681</pmid><doi>10.1002/mabi.202300096</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2091-788X</orcidid><orcidid>https://orcid.org/0000-0002-7263-928X</orcidid><orcidid>https://orcid.org/0000-0001-9397-3140</orcidid><orcidid>https://orcid.org/0000-0002-0235-6313</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2023-09, Vol.23 (9), p.e2300096-n/a |
issn | 1616-5187 1616-5195 1616-5195 |
language | eng |
recordid | cdi_proquest_miscellaneous_2805025364 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Angiogenesis anti‐inflammatory Apoptosis Bone growth Bone healing Cancer therapies Controlled release Drug delivery Gelatin Healing Hydrogels Immunomodulation Inflammation Irradiation Macrophages Mesenchymal stem cells multifunctional hydrogel Osteogenesis osteoimmunity Osteosarcoma Osteosarcoma cells polyphenolic carbon quantum dots Quantum dots Regeneration Regeneration (physiology) Scaffolds Stem cells Three dimensional printing Tissue engineering tumor ablation Tumors |
title | A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203D%20Bioprinted%20Nanoengineered%20Hydrogel%20with%20Photoactivated%20Drug%20Delivery%20for%20Tumor%20Apoptosis%20and%20Simultaneous%20Bone%20Regeneration%20via%20Macrophage%20Immunomodulation&rft.jtitle=Macromolecular%20bioscience&rft.au=Dutta,%20Sayan%20Deb&rft.date=2023-09&rft.volume=23&rft.issue=9&rft.spage=e2300096&rft.epage=n/a&rft.pages=e2300096-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202300096&rft_dat=%3Cproquest_cross%3E2805025364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864818288&rft_id=info:pmid/37087681&rfr_iscdi=true |