A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation

One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi‐functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gela...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2023-09, Vol.23 (9), p.e2300096-n/a
Hauptverfasser: Dutta, Sayan Deb, Ganguly, Keya, Hexiu, Jin, Randhawa, Aayushi, Moniruzzaman, Md, Lim, Ki‐Taek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e2300096
container_title Macromolecular bioscience
container_volume 23
creator Dutta, Sayan Deb
Ganguly, Keya
Hexiu, Jin
Randhawa, Aayushi
Moniruzzaman, Md
Lim, Ki‐Taek
description One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi‐functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti‐tumor therapy. The CQDs are synthesized from a plant‐inspired bioactive molecule, 1, 3, 5‐trihydroxybenzene. The 3D printed GelMA‐CQDs hydrogels display typical shear‐thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti‐inflammatory genes (e.g., IL‐4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel‐like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra‐red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA‐CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation. This work demonstrates using polyphenolic carbon quantum dots embedded in 3D bioprinted hydrogels with multi‐faceted applications. The dynamic M2 macrophage polarization and light‐controlled drug delivery synergistically promote bone regeneration via controlled osteosarcoma eradication and osteoblast differentiation.
doi_str_mv 10.1002/mabi.202300096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805025364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805025364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4136-3b001b5fd603936be47ce18d472b3b21eaa05f3d28dd668af995fd285f6768d43</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EoqVw5YgsceGyW_9JHOe42wW6UlsQlHPkxJOsq9hO7WSr_TZ8VLxsu0hcehmP5Z-f3sxD6D0lc0oIO7eqNnNGGCeElOIFOqWCillOy_zlsZfFCXoT4x0htJAle41OeEFkISQ9Rb8XmK_w0vghGDeCxjfKeXCdcQAhXS93OvgOevxgxg3-vvGjV81otmrPrsLU4RX0Zgthh1sf8O1kU10Mfhh9NBErp_FPY6d-VA78FPHSO8A_oAMHQY3GO7w1Cl-rJvhhozrAa2sn563XU__3_S161ao-wrvH8wz9-vL59uJydvXt6_picTVrMsrFjNdpujpvtSC85KKGrGiASp0VrOY1o6AUyVuumdRaCKnaskwwk3kr0iJ0xs_Qp4PuEPz9BHGsrIkN9P3BeMUkyQnLudijH_9D7_wUXHKXKJFJKpmUiZofqDRajAHaKq3YqrCrKKn22VX77KpjdunDh0fZqbagj_hTWAkoD8CD6WH3jFx1vViu_4n_AXMOqFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864818288</pqid></control><display><type>article</type><title>A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dutta, Sayan Deb ; Ganguly, Keya ; Hexiu, Jin ; Randhawa, Aayushi ; Moniruzzaman, Md ; Lim, Ki‐Taek</creator><creatorcontrib>Dutta, Sayan Deb ; Ganguly, Keya ; Hexiu, Jin ; Randhawa, Aayushi ; Moniruzzaman, Md ; Lim, Ki‐Taek</creatorcontrib><description>One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi‐functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti‐tumor therapy. The CQDs are synthesized from a plant‐inspired bioactive molecule, 1, 3, 5‐trihydroxybenzene. The 3D printed GelMA‐CQDs hydrogels display typical shear‐thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti‐inflammatory genes (e.g., IL‐4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel‐like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra‐red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA‐CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation. This work demonstrates using polyphenolic carbon quantum dots embedded in 3D bioprinted hydrogels with multi‐faceted applications. The dynamic M2 macrophage polarization and light‐controlled drug delivery synergistically promote bone regeneration via controlled osteosarcoma eradication and osteoblast differentiation.</description><identifier>ISSN: 1616-5187</identifier><identifier>ISSN: 1616-5195</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202300096</identifier><identifier>PMID: 37087681</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Angiogenesis ; anti‐inflammatory ; Apoptosis ; Bone growth ; Bone healing ; Cancer therapies ; Controlled release ; Drug delivery ; Gelatin ; Healing ; Hydrogels ; Immunomodulation ; Inflammation ; Irradiation ; Macrophages ; Mesenchymal stem cells ; multifunctional hydrogel ; Osteogenesis ; osteoimmunity ; Osteosarcoma ; Osteosarcoma cells ; polyphenolic carbon quantum dots ; Quantum dots ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Stem cells ; Three dimensional printing ; Tissue engineering ; tumor ablation ; Tumors</subject><ispartof>Macromolecular bioscience, 2023-09, Vol.23 (9), p.e2300096-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4136-3b001b5fd603936be47ce18d472b3b21eaa05f3d28dd668af995fd285f6768d43</citedby><cites>FETCH-LOGICAL-c4136-3b001b5fd603936be47ce18d472b3b21eaa05f3d28dd668af995fd285f6768d43</cites><orcidid>0000-0003-2091-788X ; 0000-0002-7263-928X ; 0000-0001-9397-3140 ; 0000-0002-0235-6313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202300096$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202300096$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37087681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Sayan Deb</creatorcontrib><creatorcontrib>Ganguly, Keya</creatorcontrib><creatorcontrib>Hexiu, Jin</creatorcontrib><creatorcontrib>Randhawa, Aayushi</creatorcontrib><creatorcontrib>Moniruzzaman, Md</creatorcontrib><creatorcontrib>Lim, Ki‐Taek</creatorcontrib><title>A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi‐functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti‐tumor therapy. The CQDs are synthesized from a plant‐inspired bioactive molecule, 1, 3, 5‐trihydroxybenzene. The 3D printed GelMA‐CQDs hydrogels display typical shear‐thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti‐inflammatory genes (e.g., IL‐4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel‐like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra‐red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA‐CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation. This work demonstrates using polyphenolic carbon quantum dots embedded in 3D bioprinted hydrogels with multi‐faceted applications. The dynamic M2 macrophage polarization and light‐controlled drug delivery synergistically promote bone regeneration via controlled osteosarcoma eradication and osteoblast differentiation.</description><subject>Angiogenesis</subject><subject>anti‐inflammatory</subject><subject>Apoptosis</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Cancer therapies</subject><subject>Controlled release</subject><subject>Drug delivery</subject><subject>Gelatin</subject><subject>Healing</subject><subject>Hydrogels</subject><subject>Immunomodulation</subject><subject>Inflammation</subject><subject>Irradiation</subject><subject>Macrophages</subject><subject>Mesenchymal stem cells</subject><subject>multifunctional hydrogel</subject><subject>Osteogenesis</subject><subject>osteoimmunity</subject><subject>Osteosarcoma</subject><subject>Osteosarcoma cells</subject><subject>polyphenolic carbon quantum dots</subject><subject>Quantum dots</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>tumor ablation</subject><subject>Tumors</subject><issn>1616-5187</issn><issn>1616-5195</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EoqVw5YgsceGyW_9JHOe42wW6UlsQlHPkxJOsq9hO7WSr_TZ8VLxsu0hcehmP5Z-f3sxD6D0lc0oIO7eqNnNGGCeElOIFOqWCillOy_zlsZfFCXoT4x0htJAle41OeEFkISQ9Rb8XmK_w0vghGDeCxjfKeXCdcQAhXS93OvgOevxgxg3-vvGjV81otmrPrsLU4RX0Zgthh1sf8O1kU10Mfhh9NBErp_FPY6d-VA78FPHSO8A_oAMHQY3GO7w1Cl-rJvhhozrAa2sn563XU__3_S161ao-wrvH8wz9-vL59uJydvXt6_picTVrMsrFjNdpujpvtSC85KKGrGiASp0VrOY1o6AUyVuumdRaCKnaskwwk3kr0iJ0xs_Qp4PuEPz9BHGsrIkN9P3BeMUkyQnLudijH_9D7_wUXHKXKJFJKpmUiZofqDRajAHaKq3YqrCrKKn22VX77KpjdunDh0fZqbagj_hTWAkoD8CD6WH3jFx1vViu_4n_AXMOqFY</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Dutta, Sayan Deb</creator><creator>Ganguly, Keya</creator><creator>Hexiu, Jin</creator><creator>Randhawa, Aayushi</creator><creator>Moniruzzaman, Md</creator><creator>Lim, Ki‐Taek</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2091-788X</orcidid><orcidid>https://orcid.org/0000-0002-7263-928X</orcidid><orcidid>https://orcid.org/0000-0001-9397-3140</orcidid><orcidid>https://orcid.org/0000-0002-0235-6313</orcidid></search><sort><creationdate>202309</creationdate><title>A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation</title><author>Dutta, Sayan Deb ; Ganguly, Keya ; Hexiu, Jin ; Randhawa, Aayushi ; Moniruzzaman, Md ; Lim, Ki‐Taek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4136-3b001b5fd603936be47ce18d472b3b21eaa05f3d28dd668af995fd285f6768d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiogenesis</topic><topic>anti‐inflammatory</topic><topic>Apoptosis</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Cancer therapies</topic><topic>Controlled release</topic><topic>Drug delivery</topic><topic>Gelatin</topic><topic>Healing</topic><topic>Hydrogels</topic><topic>Immunomodulation</topic><topic>Inflammation</topic><topic>Irradiation</topic><topic>Macrophages</topic><topic>Mesenchymal stem cells</topic><topic>multifunctional hydrogel</topic><topic>Osteogenesis</topic><topic>osteoimmunity</topic><topic>Osteosarcoma</topic><topic>Osteosarcoma cells</topic><topic>polyphenolic carbon quantum dots</topic><topic>Quantum dots</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>tumor ablation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Sayan Deb</creatorcontrib><creatorcontrib>Ganguly, Keya</creatorcontrib><creatorcontrib>Hexiu, Jin</creatorcontrib><creatorcontrib>Randhawa, Aayushi</creatorcontrib><creatorcontrib>Moniruzzaman, Md</creatorcontrib><creatorcontrib>Lim, Ki‐Taek</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Sayan Deb</au><au>Ganguly, Keya</au><au>Hexiu, Jin</au><au>Randhawa, Aayushi</au><au>Moniruzzaman, Md</au><au>Lim, Ki‐Taek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2023-09</date><risdate>2023</risdate><volume>23</volume><issue>9</issue><spage>e2300096</spage><epage>n/a</epage><pages>e2300096-n/a</pages><issn>1616-5187</issn><issn>1616-5195</issn><eissn>1616-5195</eissn><abstract>One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi‐functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti‐tumor therapy. The CQDs are synthesized from a plant‐inspired bioactive molecule, 1, 3, 5‐trihydroxybenzene. The 3D printed GelMA‐CQDs hydrogels display typical shear‐thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti‐inflammatory genes (e.g., IL‐4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel‐like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra‐red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA‐CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation. This work demonstrates using polyphenolic carbon quantum dots embedded in 3D bioprinted hydrogels with multi‐faceted applications. The dynamic M2 macrophage polarization and light‐controlled drug delivery synergistically promote bone regeneration via controlled osteosarcoma eradication and osteoblast differentiation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37087681</pmid><doi>10.1002/mabi.202300096</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2091-788X</orcidid><orcidid>https://orcid.org/0000-0002-7263-928X</orcidid><orcidid>https://orcid.org/0000-0001-9397-3140</orcidid><orcidid>https://orcid.org/0000-0002-0235-6313</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2023-09, Vol.23 (9), p.e2300096-n/a
issn 1616-5187
1616-5195
1616-5195
language eng
recordid cdi_proquest_miscellaneous_2805025364
source Wiley Online Library Journals Frontfile Complete
subjects Angiogenesis
anti‐inflammatory
Apoptosis
Bone growth
Bone healing
Cancer therapies
Controlled release
Drug delivery
Gelatin
Healing
Hydrogels
Immunomodulation
Inflammation
Irradiation
Macrophages
Mesenchymal stem cells
multifunctional hydrogel
Osteogenesis
osteoimmunity
Osteosarcoma
Osteosarcoma cells
polyphenolic carbon quantum dots
Quantum dots
Regeneration
Regeneration (physiology)
Scaffolds
Stem cells
Three dimensional printing
Tissue engineering
tumor ablation
Tumors
title A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203D%20Bioprinted%20Nanoengineered%20Hydrogel%20with%20Photoactivated%20Drug%20Delivery%20for%20Tumor%20Apoptosis%20and%20Simultaneous%20Bone%20Regeneration%20via%20Macrophage%20Immunomodulation&rft.jtitle=Macromolecular%20bioscience&rft.au=Dutta,%20Sayan%20Deb&rft.date=2023-09&rft.volume=23&rft.issue=9&rft.spage=e2300096&rft.epage=n/a&rft.pages=e2300096-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202300096&rft_dat=%3Cproquest_cross%3E2805025364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864818288&rft_id=info:pmid/37087681&rfr_iscdi=true