Main chain representation for evolutionary algorithms applied to distribution system reconfiguration

Distribution system problems, such as planning, loss minimization, and energy restoration, usually involve network reconfiguration procedures. The determination of an optimal network configuration is, in general, a combinatorial optimization problem. Several Evolutionary Algorithms (EAs) have been p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2005-02, Vol.20 (1), p.425-436
Hauptverfasser: Delbem, A.C.B., de Carvalho, A.C.Pd.L.F., Bretas, N.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue 1
container_start_page 425
container_title IEEE transactions on power systems
container_volume 20
creator Delbem, A.C.B.
de Carvalho, A.C.Pd.L.F.
Bretas, N.G.
description Distribution system problems, such as planning, loss minimization, and energy restoration, usually involve network reconfiguration procedures. The determination of an optimal network configuration is, in general, a combinatorial optimization problem. Several Evolutionary Algorithms (EAs) have been proposed to deal with this complex problem. Encouraging results have been achieved by using such approaches. However, the running time may be very high or even prohibitive in applications of EAs to large-scale networks. This limitation may be critical for problems requiring online solutions. The performance obtained by EAs for network reconfiguration is drastically affected by the adopted computational tree representation. Inadequate representations may drastically reduce the algorithm performance. Thus, the employed representation for chromosome encoding and the corresponding operators are very important for the performance achieved. An efficient data structure for tree representation may significantly increase the performance of evolutionary-based approaches for network reconfiguration problems. The present paper proposes a tree encoding and two genetic operators to improve the EA performance for network reconfiguration problems. The corresponding EA approach was applied to reconfigure large-scale systems. The performance achieved suggests that the proposed methodology can provide an efficient alternative for reconfiguration problems.
doi_str_mv 10.1109/TPWRS.2004.840442
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28050177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1388537</ieee_id><sourcerecordid>2361356331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-3aca46875eddc9242fd6bb5685d58dc7cb6ec774bd762f0bd191e7e93d7b31da3</originalsourceid><addsrcrecordid>eNp9kU1L5TAUhoM44PWOP0DcFBe66p2TtvlaivgFDjOMisuQJqca6W1q0g74723vFQQXbhJCnveFcx5CDimsKAX16_7v47-7VQFQrWQFVVXskAVlTObAhdolC5CS5VIx2CP7Kb0AAJ8-FsT9Nr7L7PN8RuwjJuwGM_jQZU2IGf4P7Ti_THzLTPsUoh-e1ykzfd96dNkQMufTEH29obL0lgZcT002dI1_GuOm6if50Zg24cHHvSQPlxf359f57Z-rm_Oz29xWBR3y0lhTcSkYOmdVURWN43XNuGSOSWeFrTlaIaraCV40UDuqKApUpRN1SZ0pl-R029vH8DpiGvTaJ4ttazoMY9JScaqUkjCRJ9-ShQQGVIgJPP4CvoQxdtMUWnIFktFybqNbyMaQUsRG99Gvp5VpCnrWozd69KxHb_VMmaNtxiPiJ19OnkpRvgMLEY8j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869085130</pqid></control><display><type>article</type><title>Main chain representation for evolutionary algorithms applied to distribution system reconfiguration</title><source>IEEE Electronic Library (IEL)</source><creator>Delbem, A.C.B. ; de Carvalho, A.C.Pd.L.F. ; Bretas, N.G.</creator><creatorcontrib>Delbem, A.C.B. ; de Carvalho, A.C.Pd.L.F. ; Bretas, N.G.</creatorcontrib><description>Distribution system problems, such as planning, loss minimization, and energy restoration, usually involve network reconfiguration procedures. The determination of an optimal network configuration is, in general, a combinatorial optimization problem. Several Evolutionary Algorithms (EAs) have been proposed to deal with this complex problem. Encouraging results have been achieved by using such approaches. However, the running time may be very high or even prohibitive in applications of EAs to large-scale networks. This limitation may be critical for problems requiring online solutions. The performance obtained by EAs for network reconfiguration is drastically affected by the adopted computational tree representation. Inadequate representations may drastically reduce the algorithm performance. Thus, the employed representation for chromosome encoding and the corresponding operators are very important for the performance achieved. An efficient data structure for tree representation may significantly increase the performance of evolutionary-based approaches for network reconfiguration problems. The present paper proposes a tree encoding and two genetic operators to improve the EA performance for network reconfiguration problems. The corresponding EA approach was applied to reconfigure large-scale systems. The performance achieved suggests that the proposed methodology can provide an efficient alternative for reconfiguration problems.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2004.840442</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Biological cells ; Combinatorial analysis ; Computer networks ; Distribution systems reconfiguration ; Encoding ; Evolutionary algorithms ; Evolutionary computation ; Genetics ; Large-scale systems ; main chain representation ; Mathematical programming ; Minimization methods ; Networks ; Optimization ; Reconfiguration ; Representations ; Studies ; Tree data structures ; Tree graphs ; Trees</subject><ispartof>IEEE transactions on power systems, 2005-02, Vol.20 (1), p.425-436</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-3aca46875eddc9242fd6bb5685d58dc7cb6ec774bd762f0bd191e7e93d7b31da3</citedby><cites>FETCH-LOGICAL-c421t-3aca46875eddc9242fd6bb5685d58dc7cb6ec774bd762f0bd191e7e93d7b31da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1388537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1388537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Delbem, A.C.B.</creatorcontrib><creatorcontrib>de Carvalho, A.C.Pd.L.F.</creatorcontrib><creatorcontrib>Bretas, N.G.</creatorcontrib><title>Main chain representation for evolutionary algorithms applied to distribution system reconfiguration</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Distribution system problems, such as planning, loss minimization, and energy restoration, usually involve network reconfiguration procedures. The determination of an optimal network configuration is, in general, a combinatorial optimization problem. Several Evolutionary Algorithms (EAs) have been proposed to deal with this complex problem. Encouraging results have been achieved by using such approaches. However, the running time may be very high or even prohibitive in applications of EAs to large-scale networks. This limitation may be critical for problems requiring online solutions. The performance obtained by EAs for network reconfiguration is drastically affected by the adopted computational tree representation. Inadequate representations may drastically reduce the algorithm performance. Thus, the employed representation for chromosome encoding and the corresponding operators are very important for the performance achieved. An efficient data structure for tree representation may significantly increase the performance of evolutionary-based approaches for network reconfiguration problems. The present paper proposes a tree encoding and two genetic operators to improve the EA performance for network reconfiguration problems. The corresponding EA approach was applied to reconfigure large-scale systems. The performance achieved suggests that the proposed methodology can provide an efficient alternative for reconfiguration problems.</description><subject>Algorithms</subject><subject>Biological cells</subject><subject>Combinatorial analysis</subject><subject>Computer networks</subject><subject>Distribution systems reconfiguration</subject><subject>Encoding</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Genetics</subject><subject>Large-scale systems</subject><subject>main chain representation</subject><subject>Mathematical programming</subject><subject>Minimization methods</subject><subject>Networks</subject><subject>Optimization</subject><subject>Reconfiguration</subject><subject>Representations</subject><subject>Studies</subject><subject>Tree data structures</subject><subject>Tree graphs</subject><subject>Trees</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1L5TAUhoM44PWOP0DcFBe66p2TtvlaivgFDjOMisuQJqca6W1q0g74723vFQQXbhJCnveFcx5CDimsKAX16_7v47-7VQFQrWQFVVXskAVlTObAhdolC5CS5VIx2CP7Kb0AAJ8-FsT9Nr7L7PN8RuwjJuwGM_jQZU2IGf4P7Ti_THzLTPsUoh-e1ykzfd96dNkQMufTEH29obL0lgZcT002dI1_GuOm6if50Zg24cHHvSQPlxf359f57Z-rm_Oz29xWBR3y0lhTcSkYOmdVURWN43XNuGSOSWeFrTlaIaraCV40UDuqKApUpRN1SZ0pl-R029vH8DpiGvTaJ4ttazoMY9JScaqUkjCRJ9-ShQQGVIgJPP4CvoQxdtMUWnIFktFybqNbyMaQUsRG99Gvp5VpCnrWozd69KxHb_VMmaNtxiPiJ19OnkpRvgMLEY8j</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Delbem, A.C.B.</creator><creator>de Carvalho, A.C.Pd.L.F.</creator><creator>Bretas, N.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20050201</creationdate><title>Main chain representation for evolutionary algorithms applied to distribution system reconfiguration</title><author>Delbem, A.C.B. ; de Carvalho, A.C.Pd.L.F. ; Bretas, N.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-3aca46875eddc9242fd6bb5685d58dc7cb6ec774bd762f0bd191e7e93d7b31da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Biological cells</topic><topic>Combinatorial analysis</topic><topic>Computer networks</topic><topic>Distribution systems reconfiguration</topic><topic>Encoding</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Genetics</topic><topic>Large-scale systems</topic><topic>main chain representation</topic><topic>Mathematical programming</topic><topic>Minimization methods</topic><topic>Networks</topic><topic>Optimization</topic><topic>Reconfiguration</topic><topic>Representations</topic><topic>Studies</topic><topic>Tree data structures</topic><topic>Tree graphs</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delbem, A.C.B.</creatorcontrib><creatorcontrib>de Carvalho, A.C.Pd.L.F.</creatorcontrib><creatorcontrib>Bretas, N.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Delbem, A.C.B.</au><au>de Carvalho, A.C.Pd.L.F.</au><au>Bretas, N.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Main chain representation for evolutionary algorithms applied to distribution system reconfiguration</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2005-02-01</date><risdate>2005</risdate><volume>20</volume><issue>1</issue><spage>425</spage><epage>436</epage><pages>425-436</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Distribution system problems, such as planning, loss minimization, and energy restoration, usually involve network reconfiguration procedures. The determination of an optimal network configuration is, in general, a combinatorial optimization problem. Several Evolutionary Algorithms (EAs) have been proposed to deal with this complex problem. Encouraging results have been achieved by using such approaches. However, the running time may be very high or even prohibitive in applications of EAs to large-scale networks. This limitation may be critical for problems requiring online solutions. The performance obtained by EAs for network reconfiguration is drastically affected by the adopted computational tree representation. Inadequate representations may drastically reduce the algorithm performance. Thus, the employed representation for chromosome encoding and the corresponding operators are very important for the performance achieved. An efficient data structure for tree representation may significantly increase the performance of evolutionary-based approaches for network reconfiguration problems. The present paper proposes a tree encoding and two genetic operators to improve the EA performance for network reconfiguration problems. The corresponding EA approach was applied to reconfigure large-scale systems. The performance achieved suggests that the proposed methodology can provide an efficient alternative for reconfiguration problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2004.840442</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2005-02, Vol.20 (1), p.425-436
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_28050177
source IEEE Electronic Library (IEL)
subjects Algorithms
Biological cells
Combinatorial analysis
Computer networks
Distribution systems reconfiguration
Encoding
Evolutionary algorithms
Evolutionary computation
Genetics
Large-scale systems
main chain representation
Mathematical programming
Minimization methods
Networks
Optimization
Reconfiguration
Representations
Studies
Tree data structures
Tree graphs
Trees
title Main chain representation for evolutionary algorithms applied to distribution system reconfiguration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Main%20chain%20representation%20for%20evolutionary%20algorithms%20applied%20to%20distribution%20system%20reconfiguration&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Delbem,%20A.C.B.&rft.date=2005-02-01&rft.volume=20&rft.issue=1&rft.spage=425&rft.epage=436&rft.pages=425-436&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2004.840442&rft_dat=%3Cproquest_RIE%3E2361356331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869085130&rft_id=info:pmid/&rft_ieee_id=1388537&rfr_iscdi=true