Theory and numerics of geometrically non-linear gradient plasticity
This work presents the theory and the numerics of a thermodynamically consistent formulation of geometrically non-linear gradient plasticity. Due to the lack of the classical local continuum formulation to produce physically meaningful and numerically converging results within localization computati...
Gespeichert in:
Veröffentlicht in: | International journal of engineering science 2003-08, Vol.41 (13), p.1603-1629 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1629 |
---|---|
container_issue | 13 |
container_start_page | 1603 |
container_title | International journal of engineering science |
container_volume | 41 |
creator | Liebe, Tina Menzel, Andreas Steinmann, Paul |
description | This work presents the theory and the numerics of a thermodynamically consistent formulation of geometrically non-linear gradient plasticity. Due to the lack of the classical local continuum formulation to produce physically meaningful and numerically converging results within localization computations, a thermodynamically motivated gradient plasticity formulation is envisioned. Especially within the framework of crystal plasticity we resort to physically motivated arguments in terms of geometrically necessary dislocations densities that imply the incorporation of higher gradients. In a first simplified approach presented here we adopt the gradient of the internal hardening variable as a provision for geometrically necessary dislocations. We start from a thermodynamic formulation within a geometrically non-linear setting including the additional contribution of the gradient of the internal history variable. This introduces e.g. the vectorial hardening flux and the quasi-nonlocal drag stress. At the numerical side, besides the balance of linear momentum, the algorithmic consistency condition has to be solved in weak form. Thereby, the crucial issue is the determination of the active constraints exhibiting plastic loading which is solved by an active set search algorithm borrowed from convex non-linear programming. Finally, some demonstrative numerical examples complement the presentation. |
doi_str_mv | 10.1016/S0020-7225(03)00030-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28049162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722503000302</els_id><sourcerecordid>28049162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-fd961c5c96b1aabdebac09a10266ee3c97ee7137ffd4a5b9abafa7cd9cbc9183</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiLoofVfOxXTiLFLyh4sPcwm8zWyDapyVbYf2_aih49DQPPzMv7EHLO6A2jrLp9o5TTvOa8vKLimlIqaM4PyIQ1tcw5k_Uhmfwix-Qkxo8ElULKCZkt3tGHMQNnMrdZYbA6Zr7LluhXOKQN-n7MnHd5bx1CyJYBjEU3ZOse4mC1HcZTctRBH_HsZ07J4vFhMXvO569PL7P7ea5F1Qx5Z2TFdKll1TKA1mALmkpglFcVotCyRqyZqLvOFFC2ElrooNZG6lZL1ogpudy_XQf_ucE4qJWNGvseHPpNVLyhhWQVT2C5B3XwMQbs1DrYFYRRMaq2xtTOmNrqUFSonTG1vbv4CYCYencBnLbx77ho0vtCJu5uz2Eq-2UxqKiTEo3GBtSDMt7-k_QNQNmBqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28049162</pqid></control><display><type>article</type><title>Theory and numerics of geometrically non-linear gradient plasticity</title><source>Elsevier ScienceDirect Journals</source><creator>Liebe, Tina ; Menzel, Andreas ; Steinmann, Paul</creator><creatorcontrib>Liebe, Tina ; Menzel, Andreas ; Steinmann, Paul</creatorcontrib><description>This work presents the theory and the numerics of a thermodynamically consistent formulation of geometrically non-linear gradient plasticity. Due to the lack of the classical local continuum formulation to produce physically meaningful and numerically converging results within localization computations, a thermodynamically motivated gradient plasticity formulation is envisioned. Especially within the framework of crystal plasticity we resort to physically motivated arguments in terms of geometrically necessary dislocations densities that imply the incorporation of higher gradients. In a first simplified approach presented here we adopt the gradient of the internal hardening variable as a provision for geometrically necessary dislocations. We start from a thermodynamic formulation within a geometrically non-linear setting including the additional contribution of the gradient of the internal history variable. This introduces e.g. the vectorial hardening flux and the quasi-nonlocal drag stress. At the numerical side, besides the balance of linear momentum, the algorithmic consistency condition has to be solved in weak form. Thereby, the crucial issue is the determination of the active constraints exhibiting plastic loading which is solved by an active set search algorithm borrowed from convex non-linear programming. Finally, some demonstrative numerical examples complement the presentation.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/S0020-7225(03)00030-2</identifier><identifier>CODEN: IJESAN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; FEM ; Fundamental areas of phenomenology (including applications) ; Gradient plasticity ; Inelasticity (thermoplasticity, viscoplasticity...) ; Large deformations ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Viscoelasticity, plasticity, viscoplasticity</subject><ispartof>International journal of engineering science, 2003-08, Vol.41 (13), p.1603-1629</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-fd961c5c96b1aabdebac09a10266ee3c97ee7137ffd4a5b9abafa7cd9cbc9183</citedby><cites>FETCH-LOGICAL-c368t-fd961c5c96b1aabdebac09a10266ee3c97ee7137ffd4a5b9abafa7cd9cbc9183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7225(03)00030-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14891649$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liebe, Tina</creatorcontrib><creatorcontrib>Menzel, Andreas</creatorcontrib><creatorcontrib>Steinmann, Paul</creatorcontrib><title>Theory and numerics of geometrically non-linear gradient plasticity</title><title>International journal of engineering science</title><description>This work presents the theory and the numerics of a thermodynamically consistent formulation of geometrically non-linear gradient plasticity. Due to the lack of the classical local continuum formulation to produce physically meaningful and numerically converging results within localization computations, a thermodynamically motivated gradient plasticity formulation is envisioned. Especially within the framework of crystal plasticity we resort to physically motivated arguments in terms of geometrically necessary dislocations densities that imply the incorporation of higher gradients. In a first simplified approach presented here we adopt the gradient of the internal hardening variable as a provision for geometrically necessary dislocations. We start from a thermodynamic formulation within a geometrically non-linear setting including the additional contribution of the gradient of the internal history variable. This introduces e.g. the vectorial hardening flux and the quasi-nonlocal drag stress. At the numerical side, besides the balance of linear momentum, the algorithmic consistency condition has to be solved in weak form. Thereby, the crucial issue is the determination of the active constraints exhibiting plastic loading which is solved by an active set search algorithm borrowed from convex non-linear programming. Finally, some demonstrative numerical examples complement the presentation.</description><subject>Exact sciences and technology</subject><subject>FEM</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gradient plasticity</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Large deformations</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Viscoelasticity, plasticity, viscoplasticity</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiLoofVfOxXTiLFLyh4sPcwm8zWyDapyVbYf2_aih49DQPPzMv7EHLO6A2jrLp9o5TTvOa8vKLimlIqaM4PyIQ1tcw5k_Uhmfwix-Qkxo8ElULKCZkt3tGHMQNnMrdZYbA6Zr7LluhXOKQN-n7MnHd5bx1CyJYBjEU3ZOse4mC1HcZTctRBH_HsZ07J4vFhMXvO569PL7P7ea5F1Qx5Z2TFdKll1TKA1mALmkpglFcVotCyRqyZqLvOFFC2ElrooNZG6lZL1ogpudy_XQf_ucE4qJWNGvseHPpNVLyhhWQVT2C5B3XwMQbs1DrYFYRRMaq2xtTOmNrqUFSonTG1vbv4CYCYencBnLbx77ho0vtCJu5uz2Eq-2UxqKiTEo3GBtSDMt7-k_QNQNmBqA</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Liebe, Tina</creator><creator>Menzel, Andreas</creator><creator>Steinmann, Paul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030801</creationdate><title>Theory and numerics of geometrically non-linear gradient plasticity</title><author>Liebe, Tina ; Menzel, Andreas ; Steinmann, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-fd961c5c96b1aabdebac09a10266ee3c97ee7137ffd4a5b9abafa7cd9cbc9183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>FEM</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gradient plasticity</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Large deformations</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Viscoelasticity, plasticity, viscoplasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liebe, Tina</creatorcontrib><creatorcontrib>Menzel, Andreas</creatorcontrib><creatorcontrib>Steinmann, Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liebe, Tina</au><au>Menzel, Andreas</au><au>Steinmann, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory and numerics of geometrically non-linear gradient plasticity</atitle><jtitle>International journal of engineering science</jtitle><date>2003-08-01</date><risdate>2003</risdate><volume>41</volume><issue>13</issue><spage>1603</spage><epage>1629</epage><pages>1603-1629</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><coden>IJESAN</coden><abstract>This work presents the theory and the numerics of a thermodynamically consistent formulation of geometrically non-linear gradient plasticity. Due to the lack of the classical local continuum formulation to produce physically meaningful and numerically converging results within localization computations, a thermodynamically motivated gradient plasticity formulation is envisioned. Especially within the framework of crystal plasticity we resort to physically motivated arguments in terms of geometrically necessary dislocations densities that imply the incorporation of higher gradients. In a first simplified approach presented here we adopt the gradient of the internal hardening variable as a provision for geometrically necessary dislocations. We start from a thermodynamic formulation within a geometrically non-linear setting including the additional contribution of the gradient of the internal history variable. This introduces e.g. the vectorial hardening flux and the quasi-nonlocal drag stress. At the numerical side, besides the balance of linear momentum, the algorithmic consistency condition has to be solved in weak form. Thereby, the crucial issue is the determination of the active constraints exhibiting plastic loading which is solved by an active set search algorithm borrowed from convex non-linear programming. Finally, some demonstrative numerical examples complement the presentation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7225(03)00030-2</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7225 |
ispartof | International journal of engineering science, 2003-08, Vol.41 (13), p.1603-1629 |
issn | 0020-7225 1879-2197 |
language | eng |
recordid | cdi_proquest_miscellaneous_28049162 |
source | Elsevier ScienceDirect Journals |
subjects | Exact sciences and technology FEM Fundamental areas of phenomenology (including applications) Gradient plasticity Inelasticity (thermoplasticity, viscoplasticity...) Large deformations Physics Solid mechanics Structural and continuum mechanics Viscoelasticity, plasticity, viscoplasticity |
title | Theory and numerics of geometrically non-linear gradient plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20and%20numerics%20of%20geometrically%20non-linear%20gradient%20plasticity&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Liebe,%20Tina&rft.date=2003-08-01&rft.volume=41&rft.issue=13&rft.spage=1603&rft.epage=1629&rft.pages=1603-1629&rft.issn=0020-7225&rft.eissn=1879-2197&rft.coden=IJESAN&rft_id=info:doi/10.1016/S0020-7225(03)00030-2&rft_dat=%3Cproquest_cross%3E28049162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28049162&rft_id=info:pmid/&rft_els_id=S0020722503000302&rfr_iscdi=true |