Theory and numerics of geometrically non-linear gradient plasticity

This work presents the theory and the numerics of a thermodynamically consistent formulation of geometrically non-linear gradient plasticity. Due to the lack of the classical local continuum formulation to produce physically meaningful and numerically converging results within localization computati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2003-08, Vol.41 (13), p.1603-1629
Hauptverfasser: Liebe, Tina, Menzel, Andreas, Steinmann, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1629
container_issue 13
container_start_page 1603
container_title International journal of engineering science
container_volume 41
creator Liebe, Tina
Menzel, Andreas
Steinmann, Paul
description This work presents the theory and the numerics of a thermodynamically consistent formulation of geometrically non-linear gradient plasticity. Due to the lack of the classical local continuum formulation to produce physically meaningful and numerically converging results within localization computations, a thermodynamically motivated gradient plasticity formulation is envisioned. Especially within the framework of crystal plasticity we resort to physically motivated arguments in terms of geometrically necessary dislocations densities that imply the incorporation of higher gradients. In a first simplified approach presented here we adopt the gradient of the internal hardening variable as a provision for geometrically necessary dislocations. We start from a thermodynamic formulation within a geometrically non-linear setting including the additional contribution of the gradient of the internal history variable. This introduces e.g. the vectorial hardening flux and the quasi-nonlocal drag stress. At the numerical side, besides the balance of linear momentum, the algorithmic consistency condition has to be solved in weak form. Thereby, the crucial issue is the determination of the active constraints exhibiting plastic loading which is solved by an active set search algorithm borrowed from convex non-linear programming. Finally, some demonstrative numerical examples complement the presentation.
doi_str_mv 10.1016/S0020-7225(03)00030-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28049162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722503000302</els_id><sourcerecordid>28049162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-fd961c5c96b1aabdebac09a10266ee3c97ee7137ffd4a5b9abafa7cd9cbc9183</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiLoofVfOxXTiLFLyh4sPcwm8zWyDapyVbYf2_aih49DQPPzMv7EHLO6A2jrLp9o5TTvOa8vKLimlIqaM4PyIQ1tcw5k_Uhmfwix-Qkxo8ElULKCZkt3tGHMQNnMrdZYbA6Zr7LluhXOKQN-n7MnHd5bx1CyJYBjEU3ZOse4mC1HcZTctRBH_HsZ07J4vFhMXvO569PL7P7ea5F1Qx5Z2TFdKll1TKA1mALmkpglFcVotCyRqyZqLvOFFC2ElrooNZG6lZL1ogpudy_XQf_ucE4qJWNGvseHPpNVLyhhWQVT2C5B3XwMQbs1DrYFYRRMaq2xtTOmNrqUFSonTG1vbv4CYCYencBnLbx77ho0vtCJu5uz2Eq-2UxqKiTEo3GBtSDMt7-k_QNQNmBqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28049162</pqid></control><display><type>article</type><title>Theory and numerics of geometrically non-linear gradient plasticity</title><source>Elsevier ScienceDirect Journals</source><creator>Liebe, Tina ; Menzel, Andreas ; Steinmann, Paul</creator><creatorcontrib>Liebe, Tina ; Menzel, Andreas ; Steinmann, Paul</creatorcontrib><description>This work presents the theory and the numerics of a thermodynamically consistent formulation of geometrically non-linear gradient plasticity. Due to the lack of the classical local continuum formulation to produce physically meaningful and numerically converging results within localization computations, a thermodynamically motivated gradient plasticity formulation is envisioned. Especially within the framework of crystal plasticity we resort to physically motivated arguments in terms of geometrically necessary dislocations densities that imply the incorporation of higher gradients. In a first simplified approach presented here we adopt the gradient of the internal hardening variable as a provision for geometrically necessary dislocations. We start from a thermodynamic formulation within a geometrically non-linear setting including the additional contribution of the gradient of the internal history variable. This introduces e.g. the vectorial hardening flux and the quasi-nonlocal drag stress. At the numerical side, besides the balance of linear momentum, the algorithmic consistency condition has to be solved in weak form. Thereby, the crucial issue is the determination of the active constraints exhibiting plastic loading which is solved by an active set search algorithm borrowed from convex non-linear programming. Finally, some demonstrative numerical examples complement the presentation.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/S0020-7225(03)00030-2</identifier><identifier>CODEN: IJESAN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; FEM ; Fundamental areas of phenomenology (including applications) ; Gradient plasticity ; Inelasticity (thermoplasticity, viscoplasticity...) ; Large deformations ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Viscoelasticity, plasticity, viscoplasticity</subject><ispartof>International journal of engineering science, 2003-08, Vol.41 (13), p.1603-1629</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-fd961c5c96b1aabdebac09a10266ee3c97ee7137ffd4a5b9abafa7cd9cbc9183</citedby><cites>FETCH-LOGICAL-c368t-fd961c5c96b1aabdebac09a10266ee3c97ee7137ffd4a5b9abafa7cd9cbc9183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7225(03)00030-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14891649$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liebe, Tina</creatorcontrib><creatorcontrib>Menzel, Andreas</creatorcontrib><creatorcontrib>Steinmann, Paul</creatorcontrib><title>Theory and numerics of geometrically non-linear gradient plasticity</title><title>International journal of engineering science</title><description>This work presents the theory and the numerics of a thermodynamically consistent formulation of geometrically non-linear gradient plasticity. Due to the lack of the classical local continuum formulation to produce physically meaningful and numerically converging results within localization computations, a thermodynamically motivated gradient plasticity formulation is envisioned. Especially within the framework of crystal plasticity we resort to physically motivated arguments in terms of geometrically necessary dislocations densities that imply the incorporation of higher gradients. In a first simplified approach presented here we adopt the gradient of the internal hardening variable as a provision for geometrically necessary dislocations. We start from a thermodynamic formulation within a geometrically non-linear setting including the additional contribution of the gradient of the internal history variable. This introduces e.g. the vectorial hardening flux and the quasi-nonlocal drag stress. At the numerical side, besides the balance of linear momentum, the algorithmic consistency condition has to be solved in weak form. Thereby, the crucial issue is the determination of the active constraints exhibiting plastic loading which is solved by an active set search algorithm borrowed from convex non-linear programming. Finally, some demonstrative numerical examples complement the presentation.</description><subject>Exact sciences and technology</subject><subject>FEM</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gradient plasticity</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Large deformations</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Viscoelasticity, plasticity, viscoplasticity</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiLoofVfOxXTiLFLyh4sPcwm8zWyDapyVbYf2_aih49DQPPzMv7EHLO6A2jrLp9o5TTvOa8vKLimlIqaM4PyIQ1tcw5k_Uhmfwix-Qkxo8ElULKCZkt3tGHMQNnMrdZYbA6Zr7LluhXOKQN-n7MnHd5bx1CyJYBjEU3ZOse4mC1HcZTctRBH_HsZ07J4vFhMXvO569PL7P7ea5F1Qx5Z2TFdKll1TKA1mALmkpglFcVotCyRqyZqLvOFFC2ElrooNZG6lZL1ogpudy_XQf_ucE4qJWNGvseHPpNVLyhhWQVT2C5B3XwMQbs1DrYFYRRMaq2xtTOmNrqUFSonTG1vbv4CYCYencBnLbx77ho0vtCJu5uz2Eq-2UxqKiTEo3GBtSDMt7-k_QNQNmBqA</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Liebe, Tina</creator><creator>Menzel, Andreas</creator><creator>Steinmann, Paul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030801</creationdate><title>Theory and numerics of geometrically non-linear gradient plasticity</title><author>Liebe, Tina ; Menzel, Andreas ; Steinmann, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-fd961c5c96b1aabdebac09a10266ee3c97ee7137ffd4a5b9abafa7cd9cbc9183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>FEM</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gradient plasticity</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Large deformations</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Viscoelasticity, plasticity, viscoplasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liebe, Tina</creatorcontrib><creatorcontrib>Menzel, Andreas</creatorcontrib><creatorcontrib>Steinmann, Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liebe, Tina</au><au>Menzel, Andreas</au><au>Steinmann, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory and numerics of geometrically non-linear gradient plasticity</atitle><jtitle>International journal of engineering science</jtitle><date>2003-08-01</date><risdate>2003</risdate><volume>41</volume><issue>13</issue><spage>1603</spage><epage>1629</epage><pages>1603-1629</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><coden>IJESAN</coden><abstract>This work presents the theory and the numerics of a thermodynamically consistent formulation of geometrically non-linear gradient plasticity. Due to the lack of the classical local continuum formulation to produce physically meaningful and numerically converging results within localization computations, a thermodynamically motivated gradient plasticity formulation is envisioned. Especially within the framework of crystal plasticity we resort to physically motivated arguments in terms of geometrically necessary dislocations densities that imply the incorporation of higher gradients. In a first simplified approach presented here we adopt the gradient of the internal hardening variable as a provision for geometrically necessary dislocations. We start from a thermodynamic formulation within a geometrically non-linear setting including the additional contribution of the gradient of the internal history variable. This introduces e.g. the vectorial hardening flux and the quasi-nonlocal drag stress. At the numerical side, besides the balance of linear momentum, the algorithmic consistency condition has to be solved in weak form. Thereby, the crucial issue is the determination of the active constraints exhibiting plastic loading which is solved by an active set search algorithm borrowed from convex non-linear programming. Finally, some demonstrative numerical examples complement the presentation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7225(03)00030-2</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7225
ispartof International journal of engineering science, 2003-08, Vol.41 (13), p.1603-1629
issn 0020-7225
1879-2197
language eng
recordid cdi_proquest_miscellaneous_28049162
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
FEM
Fundamental areas of phenomenology (including applications)
Gradient plasticity
Inelasticity (thermoplasticity, viscoplasticity...)
Large deformations
Physics
Solid mechanics
Structural and continuum mechanics
Viscoelasticity, plasticity, viscoplasticity
title Theory and numerics of geometrically non-linear gradient plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20and%20numerics%20of%20geometrically%20non-linear%20gradient%20plasticity&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Liebe,%20Tina&rft.date=2003-08-01&rft.volume=41&rft.issue=13&rft.spage=1603&rft.epage=1629&rft.pages=1603-1629&rft.issn=0020-7225&rft.eissn=1879-2197&rft.coden=IJESAN&rft_id=info:doi/10.1016/S0020-7225(03)00030-2&rft_dat=%3Cproquest_cross%3E28049162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28049162&rft_id=info:pmid/&rft_els_id=S0020722503000302&rfr_iscdi=true