Theorems on partitions from a page in Ramanujan's lost notebook
On page 189 in his lost notebook, Ramanujan recorded five assertions about partitions. Two are famous identities of Ramanujan immediately yielding the congruences p(5n+4)≡0 ( mod 5) and p(7n+5)≡0 ( mod 7) for the partition function p( n). Two of the identities, also originally due to Ramanujan, were...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2003-11, Vol.160 (1), p.53-68 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Journal of computational and applied mathematics |
container_volume | 160 |
creator | Berndt, Bruce C. Ja Yee, Ae Yi, Jinhee |
description | On page 189 in his lost notebook, Ramanujan recorded five assertions about partitions. Two are famous identities of Ramanujan immediately yielding the congruences
p(5n+4)≡0
(
mod
5)
and
p(7n+5)≡0
(
mod
7)
for the partition function
p(
n). Two of the identities, also originally due to Ramanujan, were rediscovered by M. Newman, who used the theory of modular forms to prove them. The fifth claim is false, but Ramanujan corrected it in his unpublished manuscript on the partition and
τ-functions. The purpose of this paper is to give completely elementary proofs of all four claims. In particular, although Ramanujan's elementary proof for his identity implying the congruence
p(7n+5)≡0
(
mod
7)
is sketched in his unpublished manuscript on the partition and
τ-functions, it has never been given in detail. This proof depends on some elementary identities mostly found in his notebooks; new proofs of these identities are given here. |
doi_str_mv | 10.1016/S0377-0427(03)00613-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28048065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042703006137</els_id><sourcerecordid>28048065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-2137ca8f42c9f774c03872567d63307287af28ca48e9b3230311e532f38c26db3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIGTjbTGa20wyK5HiDQqC1nVI0xNNnUlqMhV8e6cXdOnqwOH7z8_5EDqm5JISWl29EC5lQQST54RfEFJRXsgdNKBK1gWVUu2iwS-yjw5ynpOeqqkYoOvJO8QEbcYx4IVJne98DBm7FFts-s0bYB_ws2lNWM5NOMu4ibnDIXYwjfHjEO0502Q42s4her27nYweivHT_ePoZlxYQcuuYJRLa5QTzNZOSmEJV5KVlZxVnBPJlDSOKWuEgnrKGSecUig5c1xZVs2mfIhON3cXKX4uIXe69dlC05gAcZk1U0QoUpU9WG5Am2LOCZxeJN-a9K0p0Stdeq1Lr1xowvVal5Z97mRbYLI1jUsmWJ__wiXjvFKi5643HPTffnlIOlsPwcLMJ7CdnkX_T9MPuFN80w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28048065</pqid></control><display><type>article</type><title>Theorems on partitions from a page in Ramanujan's lost notebook</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Berndt, Bruce C. ; Ja Yee, Ae ; Yi, Jinhee</creator><creatorcontrib>Berndt, Bruce C. ; Ja Yee, Ae ; Yi, Jinhee</creatorcontrib><description>On page 189 in his lost notebook, Ramanujan recorded five assertions about partitions. Two are famous identities of Ramanujan immediately yielding the congruences
p(5n+4)≡0
(
mod
5)
and
p(7n+5)≡0
(
mod
7)
for the partition function
p(
n). Two of the identities, also originally due to Ramanujan, were rediscovered by M. Newman, who used the theory of modular forms to prove them. The fifth claim is false, but Ramanujan corrected it in his unpublished manuscript on the partition and
τ-functions. The purpose of this paper is to give completely elementary proofs of all four claims. In particular, although Ramanujan's elementary proof for his identity implying the congruence
p(7n+5)≡0
(
mod
7)
is sketched in his unpublished manuscript on the partition and
τ-functions, it has never been given in detail. This proof depends on some elementary identities mostly found in his notebooks; new proofs of these identities are given here.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(03)00613-7</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Congruences for p( n) ; Exact sciences and technology ; Mathematics ; Number theory ; Partition function p( n) ; Sciences and techniques of general use ; theta functions</subject><ispartof>Journal of computational and applied mathematics, 2003-11, Vol.160 (1), p.53-68</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-2137ca8f42c9f774c03872567d63307287af28ca48e9b3230311e532f38c26db3</citedby><cites>FETCH-LOGICAL-c415t-2137ca8f42c9f774c03872567d63307287af28ca48e9b3230311e532f38c26db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-0427(03)00613-7$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15233684$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berndt, Bruce C.</creatorcontrib><creatorcontrib>Ja Yee, Ae</creatorcontrib><creatorcontrib>Yi, Jinhee</creatorcontrib><title>Theorems on partitions from a page in Ramanujan's lost notebook</title><title>Journal of computational and applied mathematics</title><description>On page 189 in his lost notebook, Ramanujan recorded five assertions about partitions. Two are famous identities of Ramanujan immediately yielding the congruences
p(5n+4)≡0
(
mod
5)
and
p(7n+5)≡0
(
mod
7)
for the partition function
p(
n). Two of the identities, also originally due to Ramanujan, were rediscovered by M. Newman, who used the theory of modular forms to prove them. The fifth claim is false, but Ramanujan corrected it in his unpublished manuscript on the partition and
τ-functions. The purpose of this paper is to give completely elementary proofs of all four claims. In particular, although Ramanujan's elementary proof for his identity implying the congruence
p(7n+5)≡0
(
mod
7)
is sketched in his unpublished manuscript on the partition and
τ-functions, it has never been given in detail. This proof depends on some elementary identities mostly found in his notebooks; new proofs of these identities are given here.</description><subject>Algebra</subject><subject>Congruences for p( n)</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Partition function p( n)</subject><subject>Sciences and techniques of general use</subject><subject>theta functions</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIGTjbTGa20wyK5HiDQqC1nVI0xNNnUlqMhV8e6cXdOnqwOH7z8_5EDqm5JISWl29EC5lQQST54RfEFJRXsgdNKBK1gWVUu2iwS-yjw5ynpOeqqkYoOvJO8QEbcYx4IVJne98DBm7FFts-s0bYB_ws2lNWM5NOMu4ibnDIXYwjfHjEO0502Q42s4her27nYweivHT_ePoZlxYQcuuYJRLa5QTzNZOSmEJV5KVlZxVnBPJlDSOKWuEgnrKGSecUig5c1xZVs2mfIhON3cXKX4uIXe69dlC05gAcZk1U0QoUpU9WG5Am2LOCZxeJN-a9K0p0Stdeq1Lr1xowvVal5Z97mRbYLI1jUsmWJ__wiXjvFKi5643HPTffnlIOlsPwcLMJ7CdnkX_T9MPuFN80w</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Berndt, Bruce C.</creator><creator>Ja Yee, Ae</creator><creator>Yi, Jinhee</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20031101</creationdate><title>Theorems on partitions from a page in Ramanujan's lost notebook</title><author>Berndt, Bruce C. ; Ja Yee, Ae ; Yi, Jinhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-2137ca8f42c9f774c03872567d63307287af28ca48e9b3230311e532f38c26db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algebra</topic><topic>Congruences for p( n)</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Partition function p( n)</topic><topic>Sciences and techniques of general use</topic><topic>theta functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berndt, Bruce C.</creatorcontrib><creatorcontrib>Ja Yee, Ae</creatorcontrib><creatorcontrib>Yi, Jinhee</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berndt, Bruce C.</au><au>Ja Yee, Ae</au><au>Yi, Jinhee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theorems on partitions from a page in Ramanujan's lost notebook</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>160</volume><issue>1</issue><spage>53</spage><epage>68</epage><pages>53-68</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>On page 189 in his lost notebook, Ramanujan recorded five assertions about partitions. Two are famous identities of Ramanujan immediately yielding the congruences
p(5n+4)≡0
(
mod
5)
and
p(7n+5)≡0
(
mod
7)
for the partition function
p(
n). Two of the identities, also originally due to Ramanujan, were rediscovered by M. Newman, who used the theory of modular forms to prove them. The fifth claim is false, but Ramanujan corrected it in his unpublished manuscript on the partition and
τ-functions. The purpose of this paper is to give completely elementary proofs of all four claims. In particular, although Ramanujan's elementary proof for his identity implying the congruence
p(7n+5)≡0
(
mod
7)
is sketched in his unpublished manuscript on the partition and
τ-functions, it has never been given in detail. This proof depends on some elementary identities mostly found in his notebooks; new proofs of these identities are given here.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(03)00613-7</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2003-11, Vol.160 (1), p.53-68 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_28048065 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Congruences for p( n) Exact sciences and technology Mathematics Number theory Partition function p( n) Sciences and techniques of general use theta functions |
title | Theorems on partitions from a page in Ramanujan's lost notebook |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theorems%20on%20partitions%20from%20a%20page%20in%20Ramanujan's%20lost%20notebook&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Berndt,%20Bruce%20C.&rft.date=2003-11-01&rft.volume=160&rft.issue=1&rft.spage=53&rft.epage=68&rft.pages=53-68&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(03)00613-7&rft_dat=%3Cproquest_cross%3E28048065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28048065&rft_id=info:pmid/&rft_els_id=S0377042703006137&rfr_iscdi=true |