Theorems on partitions from a page in Ramanujan's lost notebook

On page 189 in his lost notebook, Ramanujan recorded five assertions about partitions. Two are famous identities of Ramanujan immediately yielding the congruences p(5n+4)≡0 ( mod 5) and p(7n+5)≡0 ( mod 7) for the partition function p( n). Two of the identities, also originally due to Ramanujan, were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2003-11, Vol.160 (1), p.53-68
Hauptverfasser: Berndt, Bruce C., Ja Yee, Ae, Yi, Jinhee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 53
container_title Journal of computational and applied mathematics
container_volume 160
creator Berndt, Bruce C.
Ja Yee, Ae
Yi, Jinhee
description On page 189 in his lost notebook, Ramanujan recorded five assertions about partitions. Two are famous identities of Ramanujan immediately yielding the congruences p(5n+4)≡0 ( mod 5) and p(7n+5)≡0 ( mod 7) for the partition function p( n). Two of the identities, also originally due to Ramanujan, were rediscovered by M. Newman, who used the theory of modular forms to prove them. The fifth claim is false, but Ramanujan corrected it in his unpublished manuscript on the partition and τ-functions. The purpose of this paper is to give completely elementary proofs of all four claims. In particular, although Ramanujan's elementary proof for his identity implying the congruence p(7n+5)≡0 ( mod 7) is sketched in his unpublished manuscript on the partition and τ-functions, it has never been given in detail. This proof depends on some elementary identities mostly found in his notebooks; new proofs of these identities are given here.
doi_str_mv 10.1016/S0377-0427(03)00613-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28048065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042703006137</els_id><sourcerecordid>28048065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-2137ca8f42c9f774c03872567d63307287af28ca48e9b3230311e532f38c26db3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIGTjbTGa20wyK5HiDQqC1nVI0xNNnUlqMhV8e6cXdOnqwOH7z8_5EDqm5JISWl29EC5lQQST54RfEFJRXsgdNKBK1gWVUu2iwS-yjw5ynpOeqqkYoOvJO8QEbcYx4IVJne98DBm7FFts-s0bYB_ws2lNWM5NOMu4ibnDIXYwjfHjEO0502Q42s4her27nYweivHT_ePoZlxYQcuuYJRLa5QTzNZOSmEJV5KVlZxVnBPJlDSOKWuEgnrKGSecUig5c1xZVs2mfIhON3cXKX4uIXe69dlC05gAcZk1U0QoUpU9WG5Am2LOCZxeJN-a9K0p0Stdeq1Lr1xowvVal5Z97mRbYLI1jUsmWJ__wiXjvFKi5643HPTffnlIOlsPwcLMJ7CdnkX_T9MPuFN80w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28048065</pqid></control><display><type>article</type><title>Theorems on partitions from a page in Ramanujan's lost notebook</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Berndt, Bruce C. ; Ja Yee, Ae ; Yi, Jinhee</creator><creatorcontrib>Berndt, Bruce C. ; Ja Yee, Ae ; Yi, Jinhee</creatorcontrib><description>On page 189 in his lost notebook, Ramanujan recorded five assertions about partitions. Two are famous identities of Ramanujan immediately yielding the congruences p(5n+4)≡0 ( mod 5) and p(7n+5)≡0 ( mod 7) for the partition function p( n). Two of the identities, also originally due to Ramanujan, were rediscovered by M. Newman, who used the theory of modular forms to prove them. The fifth claim is false, but Ramanujan corrected it in his unpublished manuscript on the partition and τ-functions. The purpose of this paper is to give completely elementary proofs of all four claims. In particular, although Ramanujan's elementary proof for his identity implying the congruence p(7n+5)≡0 ( mod 7) is sketched in his unpublished manuscript on the partition and τ-functions, it has never been given in detail. This proof depends on some elementary identities mostly found in his notebooks; new proofs of these identities are given here.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(03)00613-7</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Congruences for p( n) ; Exact sciences and technology ; Mathematics ; Number theory ; Partition function p( n) ; Sciences and techniques of general use ; theta functions</subject><ispartof>Journal of computational and applied mathematics, 2003-11, Vol.160 (1), p.53-68</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-2137ca8f42c9f774c03872567d63307287af28ca48e9b3230311e532f38c26db3</citedby><cites>FETCH-LOGICAL-c415t-2137ca8f42c9f774c03872567d63307287af28ca48e9b3230311e532f38c26db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-0427(03)00613-7$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15233684$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berndt, Bruce C.</creatorcontrib><creatorcontrib>Ja Yee, Ae</creatorcontrib><creatorcontrib>Yi, Jinhee</creatorcontrib><title>Theorems on partitions from a page in Ramanujan's lost notebook</title><title>Journal of computational and applied mathematics</title><description>On page 189 in his lost notebook, Ramanujan recorded five assertions about partitions. Two are famous identities of Ramanujan immediately yielding the congruences p(5n+4)≡0 ( mod 5) and p(7n+5)≡0 ( mod 7) for the partition function p( n). Two of the identities, also originally due to Ramanujan, were rediscovered by M. Newman, who used the theory of modular forms to prove them. The fifth claim is false, but Ramanujan corrected it in his unpublished manuscript on the partition and τ-functions. The purpose of this paper is to give completely elementary proofs of all four claims. In particular, although Ramanujan's elementary proof for his identity implying the congruence p(7n+5)≡0 ( mod 7) is sketched in his unpublished manuscript on the partition and τ-functions, it has never been given in detail. This proof depends on some elementary identities mostly found in his notebooks; new proofs of these identities are given here.</description><subject>Algebra</subject><subject>Congruences for p( n)</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Partition function p( n)</subject><subject>Sciences and techniques of general use</subject><subject>theta functions</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIGTjbTGa20wyK5HiDQqC1nVI0xNNnUlqMhV8e6cXdOnqwOH7z8_5EDqm5JISWl29EC5lQQST54RfEFJRXsgdNKBK1gWVUu2iwS-yjw5ynpOeqqkYoOvJO8QEbcYx4IVJne98DBm7FFts-s0bYB_ws2lNWM5NOMu4ibnDIXYwjfHjEO0502Q42s4her27nYweivHT_ePoZlxYQcuuYJRLa5QTzNZOSmEJV5KVlZxVnBPJlDSOKWuEgnrKGSecUig5c1xZVs2mfIhON3cXKX4uIXe69dlC05gAcZk1U0QoUpU9WG5Am2LOCZxeJN-a9K0p0Stdeq1Lr1xowvVal5Z97mRbYLI1jUsmWJ__wiXjvFKi5643HPTffnlIOlsPwcLMJ7CdnkX_T9MPuFN80w</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Berndt, Bruce C.</creator><creator>Ja Yee, Ae</creator><creator>Yi, Jinhee</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20031101</creationdate><title>Theorems on partitions from a page in Ramanujan's lost notebook</title><author>Berndt, Bruce C. ; Ja Yee, Ae ; Yi, Jinhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-2137ca8f42c9f774c03872567d63307287af28ca48e9b3230311e532f38c26db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algebra</topic><topic>Congruences for p( n)</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Partition function p( n)</topic><topic>Sciences and techniques of general use</topic><topic>theta functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berndt, Bruce C.</creatorcontrib><creatorcontrib>Ja Yee, Ae</creatorcontrib><creatorcontrib>Yi, Jinhee</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berndt, Bruce C.</au><au>Ja Yee, Ae</au><au>Yi, Jinhee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theorems on partitions from a page in Ramanujan's lost notebook</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>160</volume><issue>1</issue><spage>53</spage><epage>68</epage><pages>53-68</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>On page 189 in his lost notebook, Ramanujan recorded five assertions about partitions. Two are famous identities of Ramanujan immediately yielding the congruences p(5n+4)≡0 ( mod 5) and p(7n+5)≡0 ( mod 7) for the partition function p( n). Two of the identities, also originally due to Ramanujan, were rediscovered by M. Newman, who used the theory of modular forms to prove them. The fifth claim is false, but Ramanujan corrected it in his unpublished manuscript on the partition and τ-functions. The purpose of this paper is to give completely elementary proofs of all four claims. In particular, although Ramanujan's elementary proof for his identity implying the congruence p(7n+5)≡0 ( mod 7) is sketched in his unpublished manuscript on the partition and τ-functions, it has never been given in detail. This proof depends on some elementary identities mostly found in his notebooks; new proofs of these identities are given here.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(03)00613-7</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2003-11, Vol.160 (1), p.53-68
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_28048065
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Algebra
Congruences for p( n)
Exact sciences and technology
Mathematics
Number theory
Partition function p( n)
Sciences and techniques of general use
theta functions
title Theorems on partitions from a page in Ramanujan's lost notebook
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theorems%20on%20partitions%20from%20a%20page%20in%20Ramanujan's%20lost%20notebook&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Berndt,%20Bruce%20C.&rft.date=2003-11-01&rft.volume=160&rft.issue=1&rft.spage=53&rft.epage=68&rft.pages=53-68&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(03)00613-7&rft_dat=%3Cproquest_cross%3E28048065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28048065&rft_id=info:pmid/&rft_els_id=S0377042703006137&rfr_iscdi=true