Thermal behaviour of magnesium-containing fluorapatite
Pure fluorapatite (Fap) and magnesium-substituted fluorapatite with various Mg contents were synthesised by precipitation reactions. Scanning electron microscopy micrographs showed that the use of Mg led to a change of the grain morphology. Chemical analysis and X-ray diffraction (XRD) indicated tha...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2003-05, Vol.80 (2), p.496-505 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 2 |
container_start_page | 496 |
container_title | Materials chemistry and physics |
container_volume | 80 |
creator | Hidouri, M Bouzouita, K Kooli, F Khattech, I |
description | Pure fluorapatite (Fap) and magnesium-substituted fluorapatite with various Mg contents were synthesised by precipitation reactions. Scanning electron microscopy micrographs showed that the use of Mg led to a change of the grain morphology. Chemical analysis and X-ray diffraction (XRD) indicated that Mg introduced in the solutions was incorporated into fluorapatite. However, samples heated at different temperatures showed that some Mg amount was adsorbed to the surface of the particles in an amorphous state, which crystallised in Mg2F(PO4) at 650°C. This phase was detected up to a temperature of 1120°C. Above this value, it disappeared following its dissolution in the liquid phase formed from a eutectic between fluorapatite and fluorine. The specific surface area (SSA) decreased strongly with increasing temperature. At low temperatures, the surface reduction was due to the agglomeration of the grains. With the improvement of the crystallisation, when the temperature increased, surface diffusion took place. At higher temperatures, before the densification occurred, surface diffusion was in competition with gaseous diffusion which became dominant. |
doi_str_mv | 10.1016/S0254-0584(02)00553-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28046333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058402005539</els_id><sourcerecordid>28046333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-87f424fdfdf7391ed78f9984497cce162ea19726530f92cf78ca49a013bd1cb03</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwE5ByAcEh4Fdi-4RQxUuqxIFytlxn3RolcbGTSv33pA_BkZ3DXr7Z0Q5ClwTfEUzK-w9MC57jQvIbTG8xLgqWqyM0IlKonDFCj9HoFzlFZyl9YUwEIWyEytkSYmPqbA5Ls_ahj1lwWWMWLSTfN7kNbWd869tF5uo-RLMyne_gHJ04Uye4OOwx-nx-mk1e8-n7y9vkcZpbVsoul8Jxyl01SDBFoBLSKSU5V8JaICUFQ5SgZcGwU9Q6Ia3hymDC5hWxc8zG6Hp_dxXDdw-p041PFuratBD6pKnEvGTDjFGxB20MKUVwehV9Y-JGE6y3LeldS3pbgcZU71rSavBdHQJMsqZ20bTWpz8zF4OIHLiHPQfDt2sPUSfrobVQ-Qi201Xw_yT9ALvXe5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28046333</pqid></control><display><type>article</type><title>Thermal behaviour of magnesium-containing fluorapatite</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hidouri, M ; Bouzouita, K ; Kooli, F ; Khattech, I</creator><creatorcontrib>Hidouri, M ; Bouzouita, K ; Kooli, F ; Khattech, I</creatorcontrib><description>Pure fluorapatite (Fap) and magnesium-substituted fluorapatite with various Mg contents were synthesised by precipitation reactions. Scanning electron microscopy micrographs showed that the use of Mg led to a change of the grain morphology. Chemical analysis and X-ray diffraction (XRD) indicated that Mg introduced in the solutions was incorporated into fluorapatite. However, samples heated at different temperatures showed that some Mg amount was adsorbed to the surface of the particles in an amorphous state, which crystallised in Mg2F(PO4) at 650°C. This phase was detected up to a temperature of 1120°C. Above this value, it disappeared following its dissolution in the liquid phase formed from a eutectic between fluorapatite and fluorine. The specific surface area (SSA) decreased strongly with increasing temperature. At low temperatures, the surface reduction was due to the agglomeration of the grains. With the improvement of the crystallisation, when the temperature increased, surface diffusion took place. At higher temperatures, before the densification occurred, surface diffusion was in competition with gaseous diffusion which became dominant.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/S0254-0584(02)00553-9</identifier><identifier>CODEN: MCHPDR</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Magnesium-substituted fluorapatite ; Materials science ; Materials synthesis; materials processing ; Microstructure ; Physics ; Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation ; Specific surface area ; Thermal behaviour</subject><ispartof>Materials chemistry and physics, 2003-05, Vol.80 (2), p.496-505</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-87f424fdfdf7391ed78f9984497cce162ea19726530f92cf78ca49a013bd1cb03</citedby><cites>FETCH-LOGICAL-c368t-87f424fdfdf7391ed78f9984497cce162ea19726530f92cf78ca49a013bd1cb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0254-0584(02)00553-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14747418$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hidouri, M</creatorcontrib><creatorcontrib>Bouzouita, K</creatorcontrib><creatorcontrib>Kooli, F</creatorcontrib><creatorcontrib>Khattech, I</creatorcontrib><title>Thermal behaviour of magnesium-containing fluorapatite</title><title>Materials chemistry and physics</title><description>Pure fluorapatite (Fap) and magnesium-substituted fluorapatite with various Mg contents were synthesised by precipitation reactions. Scanning electron microscopy micrographs showed that the use of Mg led to a change of the grain morphology. Chemical analysis and X-ray diffraction (XRD) indicated that Mg introduced in the solutions was incorporated into fluorapatite. However, samples heated at different temperatures showed that some Mg amount was adsorbed to the surface of the particles in an amorphous state, which crystallised in Mg2F(PO4) at 650°C. This phase was detected up to a temperature of 1120°C. Above this value, it disappeared following its dissolution in the liquid phase formed from a eutectic between fluorapatite and fluorine. The specific surface area (SSA) decreased strongly with increasing temperature. At low temperatures, the surface reduction was due to the agglomeration of the grains. With the improvement of the crystallisation, when the temperature increased, surface diffusion took place. At higher temperatures, before the densification occurred, surface diffusion was in competition with gaseous diffusion which became dominant.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Magnesium-substituted fluorapatite</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation</subject><subject>Specific surface area</subject><subject>Thermal behaviour</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwE5ByAcEh4Fdi-4RQxUuqxIFytlxn3RolcbGTSv33pA_BkZ3DXr7Z0Q5ClwTfEUzK-w9MC57jQvIbTG8xLgqWqyM0IlKonDFCj9HoFzlFZyl9YUwEIWyEytkSYmPqbA5Ls_ahj1lwWWMWLSTfN7kNbWd869tF5uo-RLMyne_gHJ04Uye4OOwx-nx-mk1e8-n7y9vkcZpbVsoul8Jxyl01SDBFoBLSKSU5V8JaICUFQ5SgZcGwU9Q6Ia3hymDC5hWxc8zG6Hp_dxXDdw-p041PFuratBD6pKnEvGTDjFGxB20MKUVwehV9Y-JGE6y3LeldS3pbgcZU71rSavBdHQJMsqZ20bTWpz8zF4OIHLiHPQfDt2sPUSfrobVQ-Qi201Xw_yT9ALvXe5o</recordid><startdate>20030526</startdate><enddate>20030526</enddate><creator>Hidouri, M</creator><creator>Bouzouita, K</creator><creator>Kooli, F</creator><creator>Khattech, I</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20030526</creationdate><title>Thermal behaviour of magnesium-containing fluorapatite</title><author>Hidouri, M ; Bouzouita, K ; Kooli, F ; Khattech, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-87f424fdfdf7391ed78f9984497cce162ea19726530f92cf78ca49a013bd1cb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Magnesium-substituted fluorapatite</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation</topic><topic>Specific surface area</topic><topic>Thermal behaviour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hidouri, M</creatorcontrib><creatorcontrib>Bouzouita, K</creatorcontrib><creatorcontrib>Kooli, F</creatorcontrib><creatorcontrib>Khattech, I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hidouri, M</au><au>Bouzouita, K</au><au>Kooli, F</au><au>Khattech, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal behaviour of magnesium-containing fluorapatite</atitle><jtitle>Materials chemistry and physics</jtitle><date>2003-05-26</date><risdate>2003</risdate><volume>80</volume><issue>2</issue><spage>496</spage><epage>505</epage><pages>496-505</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><coden>MCHPDR</coden><abstract>Pure fluorapatite (Fap) and magnesium-substituted fluorapatite with various Mg contents were synthesised by precipitation reactions. Scanning electron microscopy micrographs showed that the use of Mg led to a change of the grain morphology. Chemical analysis and X-ray diffraction (XRD) indicated that Mg introduced in the solutions was incorporated into fluorapatite. However, samples heated at different temperatures showed that some Mg amount was adsorbed to the surface of the particles in an amorphous state, which crystallised in Mg2F(PO4) at 650°C. This phase was detected up to a temperature of 1120°C. Above this value, it disappeared following its dissolution in the liquid phase formed from a eutectic between fluorapatite and fluorine. The specific surface area (SSA) decreased strongly with increasing temperature. At low temperatures, the surface reduction was due to the agglomeration of the grains. With the improvement of the crystallisation, when the temperature increased, surface diffusion took place. At higher temperatures, before the densification occurred, surface diffusion was in competition with gaseous diffusion which became dominant.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0254-0584(02)00553-9</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2003-05, Vol.80 (2), p.496-505 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_proquest_miscellaneous_28046333 |
source | Access via ScienceDirect (Elsevier) |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology Magnesium-substituted fluorapatite Materials science Materials synthesis materials processing Microstructure Physics Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation Specific surface area Thermal behaviour |
title | Thermal behaviour of magnesium-containing fluorapatite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20behaviour%20of%20magnesium-containing%20fluorapatite&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Hidouri,%20M&rft.date=2003-05-26&rft.volume=80&rft.issue=2&rft.spage=496&rft.epage=505&rft.pages=496-505&rft.issn=0254-0584&rft.eissn=1879-3312&rft.coden=MCHPDR&rft_id=info:doi/10.1016/S0254-0584(02)00553-9&rft_dat=%3Cproquest_cross%3E28046333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28046333&rft_id=info:pmid/&rft_els_id=S0254058402005539&rfr_iscdi=true |