Thermal behaviour of magnesium-containing fluorapatite

Pure fluorapatite (Fap) and magnesium-substituted fluorapatite with various Mg contents were synthesised by precipitation reactions. Scanning electron microscopy micrographs showed that the use of Mg led to a change of the grain morphology. Chemical analysis and X-ray diffraction (XRD) indicated tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics 2003-05, Vol.80 (2), p.496-505
Hauptverfasser: Hidouri, M, Bouzouita, K, Kooli, F, Khattech, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 2
container_start_page 496
container_title Materials chemistry and physics
container_volume 80
creator Hidouri, M
Bouzouita, K
Kooli, F
Khattech, I
description Pure fluorapatite (Fap) and magnesium-substituted fluorapatite with various Mg contents were synthesised by precipitation reactions. Scanning electron microscopy micrographs showed that the use of Mg led to a change of the grain morphology. Chemical analysis and X-ray diffraction (XRD) indicated that Mg introduced in the solutions was incorporated into fluorapatite. However, samples heated at different temperatures showed that some Mg amount was adsorbed to the surface of the particles in an amorphous state, which crystallised in Mg2F(PO4) at 650°C. This phase was detected up to a temperature of 1120°C. Above this value, it disappeared following its dissolution in the liquid phase formed from a eutectic between fluorapatite and fluorine. The specific surface area (SSA) decreased strongly with increasing temperature. At low temperatures, the surface reduction was due to the agglomeration of the grains. With the improvement of the crystallisation, when the temperature increased, surface diffusion took place. At higher temperatures, before the densification occurred, surface diffusion was in competition with gaseous diffusion which became dominant.
doi_str_mv 10.1016/S0254-0584(02)00553-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28046333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058402005539</els_id><sourcerecordid>28046333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-87f424fdfdf7391ed78f9984497cce162ea19726530f92cf78ca49a013bd1cb03</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwE5ByAcEh4Fdi-4RQxUuqxIFytlxn3RolcbGTSv33pA_BkZ3DXr7Z0Q5ClwTfEUzK-w9MC57jQvIbTG8xLgqWqyM0IlKonDFCj9HoFzlFZyl9YUwEIWyEytkSYmPqbA5Ls_ahj1lwWWMWLSTfN7kNbWd869tF5uo-RLMyne_gHJ04Uye4OOwx-nx-mk1e8-n7y9vkcZpbVsoul8Jxyl01SDBFoBLSKSU5V8JaICUFQ5SgZcGwU9Q6Ia3hymDC5hWxc8zG6Hp_dxXDdw-p041PFuratBD6pKnEvGTDjFGxB20MKUVwehV9Y-JGE6y3LeldS3pbgcZU71rSavBdHQJMsqZ20bTWpz8zF4OIHLiHPQfDt2sPUSfrobVQ-Qi201Xw_yT9ALvXe5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28046333</pqid></control><display><type>article</type><title>Thermal behaviour of magnesium-containing fluorapatite</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hidouri, M ; Bouzouita, K ; Kooli, F ; Khattech, I</creator><creatorcontrib>Hidouri, M ; Bouzouita, K ; Kooli, F ; Khattech, I</creatorcontrib><description>Pure fluorapatite (Fap) and magnesium-substituted fluorapatite with various Mg contents were synthesised by precipitation reactions. Scanning electron microscopy micrographs showed that the use of Mg led to a change of the grain morphology. Chemical analysis and X-ray diffraction (XRD) indicated that Mg introduced in the solutions was incorporated into fluorapatite. However, samples heated at different temperatures showed that some Mg amount was adsorbed to the surface of the particles in an amorphous state, which crystallised in Mg2F(PO4) at 650°C. This phase was detected up to a temperature of 1120°C. Above this value, it disappeared following its dissolution in the liquid phase formed from a eutectic between fluorapatite and fluorine. The specific surface area (SSA) decreased strongly with increasing temperature. At low temperatures, the surface reduction was due to the agglomeration of the grains. With the improvement of the crystallisation, when the temperature increased, surface diffusion took place. At higher temperatures, before the densification occurred, surface diffusion was in competition with gaseous diffusion which became dominant.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/S0254-0584(02)00553-9</identifier><identifier>CODEN: MCHPDR</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Magnesium-substituted fluorapatite ; Materials science ; Materials synthesis; materials processing ; Microstructure ; Physics ; Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation ; Specific surface area ; Thermal behaviour</subject><ispartof>Materials chemistry and physics, 2003-05, Vol.80 (2), p.496-505</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-87f424fdfdf7391ed78f9984497cce162ea19726530f92cf78ca49a013bd1cb03</citedby><cites>FETCH-LOGICAL-c368t-87f424fdfdf7391ed78f9984497cce162ea19726530f92cf78ca49a013bd1cb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0254-0584(02)00553-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14747418$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hidouri, M</creatorcontrib><creatorcontrib>Bouzouita, K</creatorcontrib><creatorcontrib>Kooli, F</creatorcontrib><creatorcontrib>Khattech, I</creatorcontrib><title>Thermal behaviour of magnesium-containing fluorapatite</title><title>Materials chemistry and physics</title><description>Pure fluorapatite (Fap) and magnesium-substituted fluorapatite with various Mg contents were synthesised by precipitation reactions. Scanning electron microscopy micrographs showed that the use of Mg led to a change of the grain morphology. Chemical analysis and X-ray diffraction (XRD) indicated that Mg introduced in the solutions was incorporated into fluorapatite. However, samples heated at different temperatures showed that some Mg amount was adsorbed to the surface of the particles in an amorphous state, which crystallised in Mg2F(PO4) at 650°C. This phase was detected up to a temperature of 1120°C. Above this value, it disappeared following its dissolution in the liquid phase formed from a eutectic between fluorapatite and fluorine. The specific surface area (SSA) decreased strongly with increasing temperature. At low temperatures, the surface reduction was due to the agglomeration of the grains. With the improvement of the crystallisation, when the temperature increased, surface diffusion took place. At higher temperatures, before the densification occurred, surface diffusion was in competition with gaseous diffusion which became dominant.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Magnesium-substituted fluorapatite</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation</subject><subject>Specific surface area</subject><subject>Thermal behaviour</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwE5ByAcEh4Fdi-4RQxUuqxIFytlxn3RolcbGTSv33pA_BkZ3DXr7Z0Q5ClwTfEUzK-w9MC57jQvIbTG8xLgqWqyM0IlKonDFCj9HoFzlFZyl9YUwEIWyEytkSYmPqbA5Ls_ahj1lwWWMWLSTfN7kNbWd869tF5uo-RLMyne_gHJ04Uye4OOwx-nx-mk1e8-n7y9vkcZpbVsoul8Jxyl01SDBFoBLSKSU5V8JaICUFQ5SgZcGwU9Q6Ia3hymDC5hWxc8zG6Hp_dxXDdw-p041PFuratBD6pKnEvGTDjFGxB20MKUVwehV9Y-JGE6y3LeldS3pbgcZU71rSavBdHQJMsqZ20bTWpz8zF4OIHLiHPQfDt2sPUSfrobVQ-Qi201Xw_yT9ALvXe5o</recordid><startdate>20030526</startdate><enddate>20030526</enddate><creator>Hidouri, M</creator><creator>Bouzouita, K</creator><creator>Kooli, F</creator><creator>Khattech, I</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20030526</creationdate><title>Thermal behaviour of magnesium-containing fluorapatite</title><author>Hidouri, M ; Bouzouita, K ; Kooli, F ; Khattech, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-87f424fdfdf7391ed78f9984497cce162ea19726530f92cf78ca49a013bd1cb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Magnesium-substituted fluorapatite</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation</topic><topic>Specific surface area</topic><topic>Thermal behaviour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hidouri, M</creatorcontrib><creatorcontrib>Bouzouita, K</creatorcontrib><creatorcontrib>Kooli, F</creatorcontrib><creatorcontrib>Khattech, I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hidouri, M</au><au>Bouzouita, K</au><au>Kooli, F</au><au>Khattech, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal behaviour of magnesium-containing fluorapatite</atitle><jtitle>Materials chemistry and physics</jtitle><date>2003-05-26</date><risdate>2003</risdate><volume>80</volume><issue>2</issue><spage>496</spage><epage>505</epage><pages>496-505</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><coden>MCHPDR</coden><abstract>Pure fluorapatite (Fap) and magnesium-substituted fluorapatite with various Mg contents were synthesised by precipitation reactions. Scanning electron microscopy micrographs showed that the use of Mg led to a change of the grain morphology. Chemical analysis and X-ray diffraction (XRD) indicated that Mg introduced in the solutions was incorporated into fluorapatite. However, samples heated at different temperatures showed that some Mg amount was adsorbed to the surface of the particles in an amorphous state, which crystallised in Mg2F(PO4) at 650°C. This phase was detected up to a temperature of 1120°C. Above this value, it disappeared following its dissolution in the liquid phase formed from a eutectic between fluorapatite and fluorine. The specific surface area (SSA) decreased strongly with increasing temperature. At low temperatures, the surface reduction was due to the agglomeration of the grains. With the improvement of the crystallisation, when the temperature increased, surface diffusion took place. At higher temperatures, before the densification occurred, surface diffusion was in competition with gaseous diffusion which became dominant.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0254-0584(02)00553-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2003-05, Vol.80 (2), p.496-505
issn 0254-0584
1879-3312
language eng
recordid cdi_proquest_miscellaneous_28046333
source Access via ScienceDirect (Elsevier)
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Magnesium-substituted fluorapatite
Materials science
Materials synthesis
materials processing
Microstructure
Physics
Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation
Specific surface area
Thermal behaviour
title Thermal behaviour of magnesium-containing fluorapatite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20behaviour%20of%20magnesium-containing%20fluorapatite&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Hidouri,%20M&rft.date=2003-05-26&rft.volume=80&rft.issue=2&rft.spage=496&rft.epage=505&rft.pages=496-505&rft.issn=0254-0584&rft.eissn=1879-3312&rft.coden=MCHPDR&rft_id=info:doi/10.1016/S0254-0584(02)00553-9&rft_dat=%3Cproquest_cross%3E28046333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28046333&rft_id=info:pmid/&rft_els_id=S0254058402005539&rfr_iscdi=true