Numerical solution of transport equations for plasmas with transport barriers
An approach to solve numerically transport equations for plasmas with spontaneously arising and arbitrarily located transport barriers, regions with a strongly reduced transfer of energy, is proposed. The transport equations are written in a form conserving heat flux and solved numerically by using...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2006-07, Vol.175 (1), p.30-35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An approach to solve numerically transport equations for plasmas with spontaneously arising and arbitrarily located transport barriers, regions with a strongly reduced transfer of energy, is proposed. The transport equations are written in a form conserving heat flux and solved numerically by using piecewisely exact analytical solutions of linear differential equations. Compared to standard methods, this approach allows to reduce significantly the number of operations required to obtain a converged solution with a heat conductivity changing abruptly at a critical temperature gradient and to use large time steps in modeling the formation and dynamics of transport barriers. Computations for the tokamak JET are done. |
---|---|
ISSN: | 0010-4655 1879-2944 1386-9485 |
DOI: | 10.1016/j.cpc.2006.02.010 |