Towards optimal lower bounds for clique and chromatic number

It was previously known that neither Max Clique nor Min Chromatic Number can be approximated in polynomial time within n1−ε, for any constant ε>0, unless NP=ZPP. In this paper, we extend the reductions used to prove these results and combine the extended reductions with a recent result of Samorod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2003-04, Vol.299 (1-3), p.537-584
Hauptverfasser: Engebretsen, Lars, Holmerin, Jonas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue 1-3
container_start_page 537
container_title Theoretical computer science
container_volume 299
creator Engebretsen, Lars
Holmerin, Jonas
description It was previously known that neither Max Clique nor Min Chromatic Number can be approximated in polynomial time within n1−ε, for any constant ε>0, unless NP=ZPP. In this paper, we extend the reductions used to prove these results and combine the extended reductions with a recent result of Samorodnitsky and Trevisan to show that unless NP⊆ZPTIME(2O(logn(loglogn)3/2)), neither Max Clique nor Min Chromatic Number can be approximated in polynomial time within n1−ε(n) where ε∈O((loglogn)−1/2). Since there exists polynomial time algorithms approximating both problems within n1−ε(n) where ε(n)∈Ω(loglogn/logn), our result shows that the best possible ratio we can hope for is of the form n1−o(1), for some—yet unknown—value of o(1) between O((loglogn)−1/2) and Ω(loglogn/logn).
doi_str_mv 10.1016/S0304-3975(02)00535-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28043427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397502005352</els_id><sourcerecordid>28043427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c49746901fa6c3adf2777b4abf3bbbcad998cc34c8d405894d2d2e67088516003</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEXRQ_VaZI2KQgii1-w4MH1HNJJipG2WZPWxX9v9wM9OpeB4Xln5n0JOc3gKoOsuH4FBjxlpcgvgF4C5CxP6R6ZZFKUKaUl3yeTX-SQHMX4AWPlopiQm4Vf6WBi4pe9a3WTNH5lQ1L5oRuHtQ8JNu5zsInuTILvwbe6d5h0Q1vZcEwOat1Ee7LrU_L2cL-YPaXzl8fn2d08RVbIPkVeCl6UkNW6QKZNTYUQFddVzaqqQm3KUiIyjtJwyGXJDTXUFgKkzLMCgE3J-XbvMvjxl9ir1kW0TaM764eoqATOOBUjmG9BDD7GYGu1DKOr8K0yUOus1CYrtQ5CAVWbrBQddWe7AzqibuqgO3TxT8ylAFGwkbvdcnZ0--VsUBGd7dAaFyz2ynj3z6UfsQR9Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28043427</pqid></control><display><type>article</type><title>Towards optimal lower bounds for clique and chromatic number</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Engebretsen, Lars ; Holmerin, Jonas</creator><creatorcontrib>Engebretsen, Lars ; Holmerin, Jonas</creatorcontrib><description>It was previously known that neither Max Clique nor Min Chromatic Number can be approximated in polynomial time within n1−ε, for any constant ε&gt;0, unless NP=ZPP. In this paper, we extend the reductions used to prove these results and combine the extended reductions with a recent result of Samorodnitsky and Trevisan to show that unless NP⊆ZPTIME(2O(logn(loglogn)3/2)), neither Max Clique nor Min Chromatic Number can be approximated in polynomial time within n1−ε(n) where ε∈O((loglogn)−1/2). Since there exists polynomial time algorithms approximating both problems within n1−ε(n) where ε(n)∈Ω(loglogn/logn), our result shows that the best possible ratio we can hope for is of the form n1−o(1), for some—yet unknown—value of o(1) between O((loglogn)−1/2) and Ω(loglogn/logn).</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(02)00535-2</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Information retrieval. Graph ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Optimization. Search problems ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2003-04, Vol.299 (1-3), p.537-584</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c49746901fa6c3adf2777b4abf3bbbcad998cc34c8d405894d2d2e67088516003</citedby><cites>FETCH-LOGICAL-c368t-c49746901fa6c3adf2777b4abf3bbbcad998cc34c8d405894d2d2e67088516003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304397502005352$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14870763$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Engebretsen, Lars</creatorcontrib><creatorcontrib>Holmerin, Jonas</creatorcontrib><title>Towards optimal lower bounds for clique and chromatic number</title><title>Theoretical computer science</title><description>It was previously known that neither Max Clique nor Min Chromatic Number can be approximated in polynomial time within n1−ε, for any constant ε&gt;0, unless NP=ZPP. In this paper, we extend the reductions used to prove these results and combine the extended reductions with a recent result of Samorodnitsky and Trevisan to show that unless NP⊆ZPTIME(2O(logn(loglogn)3/2)), neither Max Clique nor Min Chromatic Number can be approximated in polynomial time within n1−ε(n) where ε∈O((loglogn)−1/2). Since there exists polynomial time algorithms approximating both problems within n1−ε(n) where ε(n)∈Ω(loglogn/logn), our result shows that the best possible ratio we can hope for is of the form n1−o(1), for some—yet unknown—value of o(1) between O((loglogn)−1/2) and Ω(loglogn/logn).</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Information retrieval. Graph</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization. Search problems</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEXRQ_VaZI2KQgii1-w4MH1HNJJipG2WZPWxX9v9wM9OpeB4Xln5n0JOc3gKoOsuH4FBjxlpcgvgF4C5CxP6R6ZZFKUKaUl3yeTX-SQHMX4AWPlopiQm4Vf6WBi4pe9a3WTNH5lQ1L5oRuHtQ8JNu5zsInuTILvwbe6d5h0Q1vZcEwOat1Ee7LrU_L2cL-YPaXzl8fn2d08RVbIPkVeCl6UkNW6QKZNTYUQFddVzaqqQm3KUiIyjtJwyGXJDTXUFgKkzLMCgE3J-XbvMvjxl9ir1kW0TaM764eoqATOOBUjmG9BDD7GYGu1DKOr8K0yUOus1CYrtQ5CAVWbrBQddWe7AzqibuqgO3TxT8ylAFGwkbvdcnZ0--VsUBGd7dAaFyz2ynj3z6UfsQR9Sg</recordid><startdate>20030418</startdate><enddate>20030418</enddate><creator>Engebretsen, Lars</creator><creator>Holmerin, Jonas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030418</creationdate><title>Towards optimal lower bounds for clique and chromatic number</title><author>Engebretsen, Lars ; Holmerin, Jonas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c49746901fa6c3adf2777b4abf3bbbcad998cc34c8d405894d2d2e67088516003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Information retrieval. Graph</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization. Search problems</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engebretsen, Lars</creatorcontrib><creatorcontrib>Holmerin, Jonas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engebretsen, Lars</au><au>Holmerin, Jonas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards optimal lower bounds for clique and chromatic number</atitle><jtitle>Theoretical computer science</jtitle><date>2003-04-18</date><risdate>2003</risdate><volume>299</volume><issue>1-3</issue><spage>537</spage><epage>584</epage><pages>537-584</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>It was previously known that neither Max Clique nor Min Chromatic Number can be approximated in polynomial time within n1−ε, for any constant ε&gt;0, unless NP=ZPP. In this paper, we extend the reductions used to prove these results and combine the extended reductions with a recent result of Samorodnitsky and Trevisan to show that unless NP⊆ZPTIME(2O(logn(loglogn)3/2)), neither Max Clique nor Min Chromatic Number can be approximated in polynomial time within n1−ε(n) where ε∈O((loglogn)−1/2). Since there exists polynomial time algorithms approximating both problems within n1−ε(n) where ε(n)∈Ω(loglogn/logn), our result shows that the best possible ratio we can hope for is of the form n1−o(1), for some—yet unknown—value of o(1) between O((loglogn)−1/2) and Ω(loglogn/logn).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(02)00535-2</doi><tpages>48</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2003-04, Vol.299 (1-3), p.537-584
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_28043427
source ScienceDirect Journals (5 years ago - present); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Exact sciences and technology
Graph theory
Information retrieval. Graph
Mathematics
Operational research and scientific management
Operational research. Management science
Optimization. Search problems
Sciences and techniques of general use
Theoretical computing
title Towards optimal lower bounds for clique and chromatic number
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20optimal%20lower%20bounds%20for%20clique%20and%20chromatic%20number&rft.jtitle=Theoretical%20computer%20science&rft.au=Engebretsen,%20Lars&rft.date=2003-04-18&rft.volume=299&rft.issue=1-3&rft.spage=537&rft.epage=584&rft.pages=537-584&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/S0304-3975(02)00535-2&rft_dat=%3Cproquest_cross%3E28043427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28043427&rft_id=info:pmid/&rft_els_id=S0304397502005352&rfr_iscdi=true