The applicability of neural network model to predict flow stress for carbon steels
A number of semi-empirical models are available in literature to predict flow stress of steel during hot deformation. In recent years, neural networks have also been used. Quantitative assessment of these models shows that the prediction errors range from 2 to 60% of the mean flow stress, when used...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 2003-10, Vol.141 (2), p.219-227 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | 2 |
container_start_page | 219 |
container_title | Journal of materials processing technology |
container_volume | 141 |
creator | Phaniraj, Madakasira Prabhakar Lahiri, Ashok Kumar |
description | A number of semi-empirical models are available in literature to predict flow stress of steel during hot deformation. In recent years, neural networks have also been used. Quantitative assessment of these models shows that the prediction errors range from 2 to 60% of the mean flow stress, when used over a range of strain rates (2–120
s
−1), temperatures (900–1100
°C) and strains until 0.8. A neural network model, which can be used to predict flow stress for carbon steels, ranging from 0.03 to 0.34%C, is proposed. The network is able to simulate the flow stress behavior with an average error of 3.7% of the mean flow stress using strain, strain rate, temperature and carbon equivalent as inputs. The network is able to interpolate not only over the domain of strain rates and temperatures but also over the domain of carbon equivalents in which it is trained. |
doi_str_mv | 10.1016/S0924-0136(02)01123-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28041890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013602011238</els_id><sourcerecordid>28041890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-2a1fc262f24dcccfc97320d914413ecefe8aadfa7529f5ba071f7cf2bb4c74c73</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxXNQsFY_gpCT6GF1kt12d08ixX9QELSeQ3Z2gtF0syappd_ebStehYEHj_cezI-xMwFXAsT0-hVqWWQg8ukFyEsQQuZZdcBGf_YRO47xA0CUUFUj9rJ4J6773lnUjXU2bbg3vKNV0G6QtPbhky99S44nz_tArcXEjfNrHlOgGLnxgaMOje8Gh8jFE3ZotIt0-qtj9nZ_t5g9ZvPnh6fZ7TzDAoqUSS0Myqk0smgR0WBd5hLaWhSFyAnJUKV1a3Q5kbWZNBpKYUo0smkKLIfLx-x8v9sH_7WimNTSRiTndEd-FZWsoBBVDUNwsg9i8DEGMqoPdqnDRglQW2pqR01t8SiQakdNVUPvZt8bnqJvS0FFtNThwCAQJtV6-8_CD5-4eA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28041890</pqid></control><display><type>article</type><title>The applicability of neural network model to predict flow stress for carbon steels</title><source>Access via ScienceDirect (Elsevier)</source><creator>Phaniraj, Madakasira Prabhakar ; Lahiri, Ashok Kumar</creator><creatorcontrib>Phaniraj, Madakasira Prabhakar ; Lahiri, Ashok Kumar</creatorcontrib><description>A number of semi-empirical models are available in literature to predict flow stress of steel during hot deformation. In recent years, neural networks have also been used. Quantitative assessment of these models shows that the prediction errors range from 2 to 60% of the mean flow stress, when used over a range of strain rates (2–120
s
−1), temperatures (900–1100
°C) and strains until 0.8. A neural network model, which can be used to predict flow stress for carbon steels, ranging from 0.03 to 0.34%C, is proposed. The network is able to simulate the flow stress behavior with an average error of 3.7% of the mean flow stress using strain, strain rate, temperature and carbon equivalent as inputs. The network is able to interpolate not only over the domain of strain rates and temperatures but also over the domain of carbon equivalents in which it is trained.</description><identifier>ISSN: 0924-0136</identifier><identifier>DOI: 10.1016/S0924-0136(02)01123-8</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Carbon steels ; Flow stress ; Hot working ; Neural network</subject><ispartof>Journal of materials processing technology, 2003-10, Vol.141 (2), p.219-227</ispartof><rights>2002 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-2a1fc262f24dcccfc97320d914413ecefe8aadfa7529f5ba071f7cf2bb4c74c73</citedby><cites>FETCH-LOGICAL-c404t-2a1fc262f24dcccfc97320d914413ecefe8aadfa7529f5ba071f7cf2bb4c74c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0924-0136(02)01123-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Phaniraj, Madakasira Prabhakar</creatorcontrib><creatorcontrib>Lahiri, Ashok Kumar</creatorcontrib><title>The applicability of neural network model to predict flow stress for carbon steels</title><title>Journal of materials processing technology</title><description>A number of semi-empirical models are available in literature to predict flow stress of steel during hot deformation. In recent years, neural networks have also been used. Quantitative assessment of these models shows that the prediction errors range from 2 to 60% of the mean flow stress, when used over a range of strain rates (2–120
s
−1), temperatures (900–1100
°C) and strains until 0.8. A neural network model, which can be used to predict flow stress for carbon steels, ranging from 0.03 to 0.34%C, is proposed. The network is able to simulate the flow stress behavior with an average error of 3.7% of the mean flow stress using strain, strain rate, temperature and carbon equivalent as inputs. The network is able to interpolate not only over the domain of strain rates and temperatures but also over the domain of carbon equivalents in which it is trained.</description><subject>Carbon steels</subject><subject>Flow stress</subject><subject>Hot working</subject><subject>Neural network</subject><issn>0924-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxXNQsFY_gpCT6GF1kt12d08ixX9QELSeQ3Z2gtF0syappd_ebStehYEHj_cezI-xMwFXAsT0-hVqWWQg8ukFyEsQQuZZdcBGf_YRO47xA0CUUFUj9rJ4J6773lnUjXU2bbg3vKNV0G6QtPbhky99S44nz_tArcXEjfNrHlOgGLnxgaMOje8Gh8jFE3ZotIt0-qtj9nZ_t5g9ZvPnh6fZ7TzDAoqUSS0Myqk0smgR0WBd5hLaWhSFyAnJUKV1a3Q5kbWZNBpKYUo0smkKLIfLx-x8v9sH_7WimNTSRiTndEd-FZWsoBBVDUNwsg9i8DEGMqoPdqnDRglQW2pqR01t8SiQakdNVUPvZt8bnqJvS0FFtNThwCAQJtV6-8_CD5-4eA4</recordid><startdate>20031020</startdate><enddate>20031020</enddate><creator>Phaniraj, Madakasira Prabhakar</creator><creator>Lahiri, Ashok Kumar</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20031020</creationdate><title>The applicability of neural network model to predict flow stress for carbon steels</title><author>Phaniraj, Madakasira Prabhakar ; Lahiri, Ashok Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-2a1fc262f24dcccfc97320d914413ecefe8aadfa7529f5ba071f7cf2bb4c74c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Carbon steels</topic><topic>Flow stress</topic><topic>Hot working</topic><topic>Neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phaniraj, Madakasira Prabhakar</creatorcontrib><creatorcontrib>Lahiri, Ashok Kumar</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phaniraj, Madakasira Prabhakar</au><au>Lahiri, Ashok Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The applicability of neural network model to predict flow stress for carbon steels</atitle><jtitle>Journal of materials processing technology</jtitle><date>2003-10-20</date><risdate>2003</risdate><volume>141</volume><issue>2</issue><spage>219</spage><epage>227</epage><pages>219-227</pages><issn>0924-0136</issn><abstract>A number of semi-empirical models are available in literature to predict flow stress of steel during hot deformation. In recent years, neural networks have also been used. Quantitative assessment of these models shows that the prediction errors range from 2 to 60% of the mean flow stress, when used over a range of strain rates (2–120
s
−1), temperatures (900–1100
°C) and strains until 0.8. A neural network model, which can be used to predict flow stress for carbon steels, ranging from 0.03 to 0.34%C, is proposed. The network is able to simulate the flow stress behavior with an average error of 3.7% of the mean flow stress using strain, strain rate, temperature and carbon equivalent as inputs. The network is able to interpolate not only over the domain of strain rates and temperatures but also over the domain of carbon equivalents in which it is trained.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0924-0136(02)01123-8</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-0136 |
ispartof | Journal of materials processing technology, 2003-10, Vol.141 (2), p.219-227 |
issn | 0924-0136 |
language | eng |
recordid | cdi_proquest_miscellaneous_28041890 |
source | Access via ScienceDirect (Elsevier) |
subjects | Carbon steels Flow stress Hot working Neural network |
title | The applicability of neural network model to predict flow stress for carbon steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20applicability%20of%20neural%20network%20model%20to%20predict%20flow%20stress%20for%20carbon%20steels&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Phaniraj,%20Madakasira%20Prabhakar&rft.date=2003-10-20&rft.volume=141&rft.issue=2&rft.spage=219&rft.epage=227&rft.pages=219-227&rft.issn=0924-0136&rft_id=info:doi/10.1016/S0924-0136(02)01123-8&rft_dat=%3Cproquest_cross%3E28041890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28041890&rft_id=info:pmid/&rft_els_id=S0924013602011238&rfr_iscdi=true |