The applicability of neural network model to predict flow stress for carbon steels

A number of semi-empirical models are available in literature to predict flow stress of steel during hot deformation. In recent years, neural networks have also been used. Quantitative assessment of these models shows that the prediction errors range from 2 to 60% of the mean flow stress, when used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2003-10, Vol.141 (2), p.219-227
Hauptverfasser: Phaniraj, Madakasira Prabhakar, Lahiri, Ashok Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue 2
container_start_page 219
container_title Journal of materials processing technology
container_volume 141
creator Phaniraj, Madakasira Prabhakar
Lahiri, Ashok Kumar
description A number of semi-empirical models are available in literature to predict flow stress of steel during hot deformation. In recent years, neural networks have also been used. Quantitative assessment of these models shows that the prediction errors range from 2 to 60% of the mean flow stress, when used over a range of strain rates (2–120 s −1), temperatures (900–1100 °C) and strains until 0.8. A neural network model, which can be used to predict flow stress for carbon steels, ranging from 0.03 to 0.34%C, is proposed. The network is able to simulate the flow stress behavior with an average error of 3.7% of the mean flow stress using strain, strain rate, temperature and carbon equivalent as inputs. The network is able to interpolate not only over the domain of strain rates and temperatures but also over the domain of carbon equivalents in which it is trained.
doi_str_mv 10.1016/S0924-0136(02)01123-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28041890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013602011238</els_id><sourcerecordid>28041890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-2a1fc262f24dcccfc97320d914413ecefe8aadfa7529f5ba071f7cf2bb4c74c73</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxXNQsFY_gpCT6GF1kt12d08ixX9QELSeQ3Z2gtF0syappd_ebStehYEHj_cezI-xMwFXAsT0-hVqWWQg8ukFyEsQQuZZdcBGf_YRO47xA0CUUFUj9rJ4J6773lnUjXU2bbg3vKNV0G6QtPbhky99S44nz_tArcXEjfNrHlOgGLnxgaMOje8Gh8jFE3ZotIt0-qtj9nZ_t5g9ZvPnh6fZ7TzDAoqUSS0Myqk0smgR0WBd5hLaWhSFyAnJUKV1a3Q5kbWZNBpKYUo0smkKLIfLx-x8v9sH_7WimNTSRiTndEd-FZWsoBBVDUNwsg9i8DEGMqoPdqnDRglQW2pqR01t8SiQakdNVUPvZt8bnqJvS0FFtNThwCAQJtV6-8_CD5-4eA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28041890</pqid></control><display><type>article</type><title>The applicability of neural network model to predict flow stress for carbon steels</title><source>Access via ScienceDirect (Elsevier)</source><creator>Phaniraj, Madakasira Prabhakar ; Lahiri, Ashok Kumar</creator><creatorcontrib>Phaniraj, Madakasira Prabhakar ; Lahiri, Ashok Kumar</creatorcontrib><description>A number of semi-empirical models are available in literature to predict flow stress of steel during hot deformation. In recent years, neural networks have also been used. Quantitative assessment of these models shows that the prediction errors range from 2 to 60% of the mean flow stress, when used over a range of strain rates (2–120 s −1), temperatures (900–1100 °C) and strains until 0.8. A neural network model, which can be used to predict flow stress for carbon steels, ranging from 0.03 to 0.34%C, is proposed. The network is able to simulate the flow stress behavior with an average error of 3.7% of the mean flow stress using strain, strain rate, temperature and carbon equivalent as inputs. The network is able to interpolate not only over the domain of strain rates and temperatures but also over the domain of carbon equivalents in which it is trained.</description><identifier>ISSN: 0924-0136</identifier><identifier>DOI: 10.1016/S0924-0136(02)01123-8</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Carbon steels ; Flow stress ; Hot working ; Neural network</subject><ispartof>Journal of materials processing technology, 2003-10, Vol.141 (2), p.219-227</ispartof><rights>2002 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-2a1fc262f24dcccfc97320d914413ecefe8aadfa7529f5ba071f7cf2bb4c74c73</citedby><cites>FETCH-LOGICAL-c404t-2a1fc262f24dcccfc97320d914413ecefe8aadfa7529f5ba071f7cf2bb4c74c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0924-0136(02)01123-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Phaniraj, Madakasira Prabhakar</creatorcontrib><creatorcontrib>Lahiri, Ashok Kumar</creatorcontrib><title>The applicability of neural network model to predict flow stress for carbon steels</title><title>Journal of materials processing technology</title><description>A number of semi-empirical models are available in literature to predict flow stress of steel during hot deformation. In recent years, neural networks have also been used. Quantitative assessment of these models shows that the prediction errors range from 2 to 60% of the mean flow stress, when used over a range of strain rates (2–120 s −1), temperatures (900–1100 °C) and strains until 0.8. A neural network model, which can be used to predict flow stress for carbon steels, ranging from 0.03 to 0.34%C, is proposed. The network is able to simulate the flow stress behavior with an average error of 3.7% of the mean flow stress using strain, strain rate, temperature and carbon equivalent as inputs. The network is able to interpolate not only over the domain of strain rates and temperatures but also over the domain of carbon equivalents in which it is trained.</description><subject>Carbon steels</subject><subject>Flow stress</subject><subject>Hot working</subject><subject>Neural network</subject><issn>0924-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxXNQsFY_gpCT6GF1kt12d08ixX9QELSeQ3Z2gtF0syappd_ebStehYEHj_cezI-xMwFXAsT0-hVqWWQg8ukFyEsQQuZZdcBGf_YRO47xA0CUUFUj9rJ4J6773lnUjXU2bbg3vKNV0G6QtPbhky99S44nz_tArcXEjfNrHlOgGLnxgaMOje8Gh8jFE3ZotIt0-qtj9nZ_t5g9ZvPnh6fZ7TzDAoqUSS0Myqk0smgR0WBd5hLaWhSFyAnJUKV1a3Q5kbWZNBpKYUo0smkKLIfLx-x8v9sH_7WimNTSRiTndEd-FZWsoBBVDUNwsg9i8DEGMqoPdqnDRglQW2pqR01t8SiQakdNVUPvZt8bnqJvS0FFtNThwCAQJtV6-8_CD5-4eA4</recordid><startdate>20031020</startdate><enddate>20031020</enddate><creator>Phaniraj, Madakasira Prabhakar</creator><creator>Lahiri, Ashok Kumar</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20031020</creationdate><title>The applicability of neural network model to predict flow stress for carbon steels</title><author>Phaniraj, Madakasira Prabhakar ; Lahiri, Ashok Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-2a1fc262f24dcccfc97320d914413ecefe8aadfa7529f5ba071f7cf2bb4c74c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Carbon steels</topic><topic>Flow stress</topic><topic>Hot working</topic><topic>Neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phaniraj, Madakasira Prabhakar</creatorcontrib><creatorcontrib>Lahiri, Ashok Kumar</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phaniraj, Madakasira Prabhakar</au><au>Lahiri, Ashok Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The applicability of neural network model to predict flow stress for carbon steels</atitle><jtitle>Journal of materials processing technology</jtitle><date>2003-10-20</date><risdate>2003</risdate><volume>141</volume><issue>2</issue><spage>219</spage><epage>227</epage><pages>219-227</pages><issn>0924-0136</issn><abstract>A number of semi-empirical models are available in literature to predict flow stress of steel during hot deformation. In recent years, neural networks have also been used. Quantitative assessment of these models shows that the prediction errors range from 2 to 60% of the mean flow stress, when used over a range of strain rates (2–120 s −1), temperatures (900–1100 °C) and strains until 0.8. A neural network model, which can be used to predict flow stress for carbon steels, ranging from 0.03 to 0.34%C, is proposed. The network is able to simulate the flow stress behavior with an average error of 3.7% of the mean flow stress using strain, strain rate, temperature and carbon equivalent as inputs. The network is able to interpolate not only over the domain of strain rates and temperatures but also over the domain of carbon equivalents in which it is trained.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0924-0136(02)01123-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2003-10, Vol.141 (2), p.219-227
issn 0924-0136
language eng
recordid cdi_proquest_miscellaneous_28041890
source Access via ScienceDirect (Elsevier)
subjects Carbon steels
Flow stress
Hot working
Neural network
title The applicability of neural network model to predict flow stress for carbon steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20applicability%20of%20neural%20network%20model%20to%20predict%20flow%20stress%20for%20carbon%20steels&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Phaniraj,%20Madakasira%20Prabhakar&rft.date=2003-10-20&rft.volume=141&rft.issue=2&rft.spage=219&rft.epage=227&rft.pages=219-227&rft.issn=0924-0136&rft_id=info:doi/10.1016/S0924-0136(02)01123-8&rft_dat=%3Cproquest_cross%3E28041890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28041890&rft_id=info:pmid/&rft_els_id=S0924013602011238&rfr_iscdi=true