Selected Kraft lignin fractions as precursor for carbon foam: Structure-performance correlation and electrochemical applications

The rapid exhaustion of fossil fuels brings to the fore the need to search for energy efficient strategies. The conversion of lignin into advanced functional carbon-based materials is considered one of the most promising solutions for environmental protection and the use of renewable resources. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-06, Vol.240, p.124460-124460, Article 124460
Hauptverfasser: Rodrigues, Jéssica S., de Freitas, Amanda De S.M., Maciel, Cristiane C., Guizani, Chamseddine, Rigo, Davide, Ferreira, Marystela, Hummel, Michael, Balakshin, Mikhail, Botaro, Vagner R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124460
container_issue
container_start_page 124460
container_title International journal of biological macromolecules
container_volume 240
creator Rodrigues, Jéssica S.
de Freitas, Amanda De S.M.
Maciel, Cristiane C.
Guizani, Chamseddine
Rigo, Davide
Ferreira, Marystela
Hummel, Michael
Balakshin, Mikhail
Botaro, Vagner R.
description The rapid exhaustion of fossil fuels brings to the fore the need to search for energy efficient strategies. The conversion of lignin into advanced functional carbon-based materials is considered one of the most promising solutions for environmental protection and the use of renewable resources. This study analyzed the structure-performance correlation of carbon foams (CF) when lignin-phenol-formaldehyde (LPF) resins produced with different fractions of kraft lignin (KL) were employed as carbon source, and polyurethane foam (PU) as sacrificial mold. The lignin fractions employed were KL, fraction of KL insoluble in ethyl acetate (LFIns) and fraction of KL soluble in ethyl acetate (LFSol). The produced CFs were characterized by thermogravimetric analysis (TGA), X-ray diffractometry (XRD), Raman spectroscopy, 2D HSQC Nuclear magnetic resonance (NMR) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and electrochemical measurements. The results showed that when LFSol was employed as a partial substitute for phenol in LPF resin synthesis, the final performance of the produced CF was infinitely higher. The improved solubility parameters of LFSol along with the higher S/G ratio and β-O-4/α-OH content after fractionation were the key to produce CF with better carbon yields (54 %). The electrochemical measurements showed that LFSol presented the highest current density (2.11 × 10−4 mA.cm−2) and the lowest value of resistance to charge transfer (0.26 KΩ) in relation to the other samples, indicating that the process of electron transfer was faster in the sensor produced with LFSol. LFSol's potential for application as an electrochemical sensor was tested as a proof of concept and demonstrated excellent selectivity for the detection of hydroquinone in water.
doi_str_mv 10.1016/j.ijbiomac.2023.124460
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2803965207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813023013545</els_id><sourcerecordid>2803965207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b69bd21ce0be493d26da606565944f84b2f208fdbb9b540f405536ea754615833</originalsourceid><addsrcrecordid>eNqFkEtv1TAQRi0EopeWv1B5ySaX8TMJK1DFo6ISi9K15ccEfJXEwU6QuuOn49vbsmVh2RqfmU9zCLlksGfA9NvDPh5cTJP1ew5c7BmXUsMzsmNd2zcAIJ6THTDJmo4JOCOvSjnUqlase0nORAutBs125M8tjuhXDPRrtsNKx_hjjjMdsvVrTHOhttAlo99ySZkO9XibXapEstM7ervmza9bxmbBXH8nO3ukPuWMoz0OoHYO9CEiJ_8Tp-jtSO2yjPXxEHBBXgx2LPj68T4nd58-fr_60tx8-3x99eGm8UJ3a-N07wJnHsGh7EXgOti6gdKql3LopOMDh24IzvVOSRgkKCU02lZJzVQnxDl5c5q75PRrw7KaKRaP42hnTFsxvAPRa8Whrag-oT6nUjIOZslxsvneMDBH--Zgnuybo31zsl8bLx8zNjdh-Nf2pLsC708A1k1_R8ym-IhVWYjV8WpCiv_L-AuGtJur</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803965207</pqid></control><display><type>article</type><title>Selected Kraft lignin fractions as precursor for carbon foam: Structure-performance correlation and electrochemical applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rodrigues, Jéssica S. ; de Freitas, Amanda De S.M. ; Maciel, Cristiane C. ; Guizani, Chamseddine ; Rigo, Davide ; Ferreira, Marystela ; Hummel, Michael ; Balakshin, Mikhail ; Botaro, Vagner R.</creator><creatorcontrib>Rodrigues, Jéssica S. ; de Freitas, Amanda De S.M. ; Maciel, Cristiane C. ; Guizani, Chamseddine ; Rigo, Davide ; Ferreira, Marystela ; Hummel, Michael ; Balakshin, Mikhail ; Botaro, Vagner R.</creatorcontrib><description>The rapid exhaustion of fossil fuels brings to the fore the need to search for energy efficient strategies. The conversion of lignin into advanced functional carbon-based materials is considered one of the most promising solutions for environmental protection and the use of renewable resources. This study analyzed the structure-performance correlation of carbon foams (CF) when lignin-phenol-formaldehyde (LPF) resins produced with different fractions of kraft lignin (KL) were employed as carbon source, and polyurethane foam (PU) as sacrificial mold. The lignin fractions employed were KL, fraction of KL insoluble in ethyl acetate (LFIns) and fraction of KL soluble in ethyl acetate (LFSol). The produced CFs were characterized by thermogravimetric analysis (TGA), X-ray diffractometry (XRD), Raman spectroscopy, 2D HSQC Nuclear magnetic resonance (NMR) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and electrochemical measurements. The results showed that when LFSol was employed as a partial substitute for phenol in LPF resin synthesis, the final performance of the produced CF was infinitely higher. The improved solubility parameters of LFSol along with the higher S/G ratio and β-O-4/α-OH content after fractionation were the key to produce CF with better carbon yields (54 %). The electrochemical measurements showed that LFSol presented the highest current density (2.11 × 10−4 mA.cm−2) and the lowest value of resistance to charge transfer (0.26 KΩ) in relation to the other samples, indicating that the process of electron transfer was faster in the sensor produced with LFSol. LFSol's potential for application as an electrochemical sensor was tested as a proof of concept and demonstrated excellent selectivity for the detection of hydroquinone in water.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2023.124460</identifier><identifier>PMID: 37076061</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Carbon ; Carbon foams ; Kraft lignin ; Lignin - chemistry ; Lignin fractions ; Phenols ; Thermal decomposition. Electrochemical applications</subject><ispartof>International journal of biological macromolecules, 2023-06, Vol.240, p.124460-124460, Article 124460</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b69bd21ce0be493d26da606565944f84b2f208fdbb9b540f405536ea754615833</citedby><cites>FETCH-LOGICAL-c368t-b69bd21ce0be493d26da606565944f84b2f208fdbb9b540f405536ea754615833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141813023013545$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37076061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigues, Jéssica S.</creatorcontrib><creatorcontrib>de Freitas, Amanda De S.M.</creatorcontrib><creatorcontrib>Maciel, Cristiane C.</creatorcontrib><creatorcontrib>Guizani, Chamseddine</creatorcontrib><creatorcontrib>Rigo, Davide</creatorcontrib><creatorcontrib>Ferreira, Marystela</creatorcontrib><creatorcontrib>Hummel, Michael</creatorcontrib><creatorcontrib>Balakshin, Mikhail</creatorcontrib><creatorcontrib>Botaro, Vagner R.</creatorcontrib><title>Selected Kraft lignin fractions as precursor for carbon foam: Structure-performance correlation and electrochemical applications</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>The rapid exhaustion of fossil fuels brings to the fore the need to search for energy efficient strategies. The conversion of lignin into advanced functional carbon-based materials is considered one of the most promising solutions for environmental protection and the use of renewable resources. This study analyzed the structure-performance correlation of carbon foams (CF) when lignin-phenol-formaldehyde (LPF) resins produced with different fractions of kraft lignin (KL) were employed as carbon source, and polyurethane foam (PU) as sacrificial mold. The lignin fractions employed were KL, fraction of KL insoluble in ethyl acetate (LFIns) and fraction of KL soluble in ethyl acetate (LFSol). The produced CFs were characterized by thermogravimetric analysis (TGA), X-ray diffractometry (XRD), Raman spectroscopy, 2D HSQC Nuclear magnetic resonance (NMR) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and electrochemical measurements. The results showed that when LFSol was employed as a partial substitute for phenol in LPF resin synthesis, the final performance of the produced CF was infinitely higher. The improved solubility parameters of LFSol along with the higher S/G ratio and β-O-4/α-OH content after fractionation were the key to produce CF with better carbon yields (54 %). The electrochemical measurements showed that LFSol presented the highest current density (2.11 × 10−4 mA.cm−2) and the lowest value of resistance to charge transfer (0.26 KΩ) in relation to the other samples, indicating that the process of electron transfer was faster in the sensor produced with LFSol. LFSol's potential for application as an electrochemical sensor was tested as a proof of concept and demonstrated excellent selectivity for the detection of hydroquinone in water.</description><subject>Carbon</subject><subject>Carbon foams</subject><subject>Kraft lignin</subject><subject>Lignin - chemistry</subject><subject>Lignin fractions</subject><subject>Phenols</subject><subject>Thermal decomposition. Electrochemical applications</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtv1TAQRi0EopeWv1B5ySaX8TMJK1DFo6ISi9K15ccEfJXEwU6QuuOn49vbsmVh2RqfmU9zCLlksGfA9NvDPh5cTJP1ew5c7BmXUsMzsmNd2zcAIJ6THTDJmo4JOCOvSjnUqlase0nORAutBs125M8tjuhXDPRrtsNKx_hjjjMdsvVrTHOhttAlo99ySZkO9XibXapEstM7ervmza9bxmbBXH8nO3ukPuWMoz0OoHYO9CEiJ_8Tp-jtSO2yjPXxEHBBXgx2LPj68T4nd58-fr_60tx8-3x99eGm8UJ3a-N07wJnHsGh7EXgOti6gdKql3LopOMDh24IzvVOSRgkKCU02lZJzVQnxDl5c5q75PRrw7KaKRaP42hnTFsxvAPRa8Whrag-oT6nUjIOZslxsvneMDBH--Zgnuybo31zsl8bLx8zNjdh-Nf2pLsC708A1k1_R8ym-IhVWYjV8WpCiv_L-AuGtJur</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Rodrigues, Jéssica S.</creator><creator>de Freitas, Amanda De S.M.</creator><creator>Maciel, Cristiane C.</creator><creator>Guizani, Chamseddine</creator><creator>Rigo, Davide</creator><creator>Ferreira, Marystela</creator><creator>Hummel, Michael</creator><creator>Balakshin, Mikhail</creator><creator>Botaro, Vagner R.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230615</creationdate><title>Selected Kraft lignin fractions as precursor for carbon foam: Structure-performance correlation and electrochemical applications</title><author>Rodrigues, Jéssica S. ; de Freitas, Amanda De S.M. ; Maciel, Cristiane C. ; Guizani, Chamseddine ; Rigo, Davide ; Ferreira, Marystela ; Hummel, Michael ; Balakshin, Mikhail ; Botaro, Vagner R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b69bd21ce0be493d26da606565944f84b2f208fdbb9b540f405536ea754615833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Carbon foams</topic><topic>Kraft lignin</topic><topic>Lignin - chemistry</topic><topic>Lignin fractions</topic><topic>Phenols</topic><topic>Thermal decomposition. Electrochemical applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Jéssica S.</creatorcontrib><creatorcontrib>de Freitas, Amanda De S.M.</creatorcontrib><creatorcontrib>Maciel, Cristiane C.</creatorcontrib><creatorcontrib>Guizani, Chamseddine</creatorcontrib><creatorcontrib>Rigo, Davide</creatorcontrib><creatorcontrib>Ferreira, Marystela</creatorcontrib><creatorcontrib>Hummel, Michael</creatorcontrib><creatorcontrib>Balakshin, Mikhail</creatorcontrib><creatorcontrib>Botaro, Vagner R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Jéssica S.</au><au>de Freitas, Amanda De S.M.</au><au>Maciel, Cristiane C.</au><au>Guizani, Chamseddine</au><au>Rigo, Davide</au><au>Ferreira, Marystela</au><au>Hummel, Michael</au><au>Balakshin, Mikhail</au><au>Botaro, Vagner R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selected Kraft lignin fractions as precursor for carbon foam: Structure-performance correlation and electrochemical applications</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2023-06-15</date><risdate>2023</risdate><volume>240</volume><spage>124460</spage><epage>124460</epage><pages>124460-124460</pages><artnum>124460</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>The rapid exhaustion of fossil fuels brings to the fore the need to search for energy efficient strategies. The conversion of lignin into advanced functional carbon-based materials is considered one of the most promising solutions for environmental protection and the use of renewable resources. This study analyzed the structure-performance correlation of carbon foams (CF) when lignin-phenol-formaldehyde (LPF) resins produced with different fractions of kraft lignin (KL) were employed as carbon source, and polyurethane foam (PU) as sacrificial mold. The lignin fractions employed were KL, fraction of KL insoluble in ethyl acetate (LFIns) and fraction of KL soluble in ethyl acetate (LFSol). The produced CFs were characterized by thermogravimetric analysis (TGA), X-ray diffractometry (XRD), Raman spectroscopy, 2D HSQC Nuclear magnetic resonance (NMR) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and electrochemical measurements. The results showed that when LFSol was employed as a partial substitute for phenol in LPF resin synthesis, the final performance of the produced CF was infinitely higher. The improved solubility parameters of LFSol along with the higher S/G ratio and β-O-4/α-OH content after fractionation were the key to produce CF with better carbon yields (54 %). The electrochemical measurements showed that LFSol presented the highest current density (2.11 × 10−4 mA.cm−2) and the lowest value of resistance to charge transfer (0.26 KΩ) in relation to the other samples, indicating that the process of electron transfer was faster in the sensor produced with LFSol. LFSol's potential for application as an electrochemical sensor was tested as a proof of concept and demonstrated excellent selectivity for the detection of hydroquinone in water.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37076061</pmid><doi>10.1016/j.ijbiomac.2023.124460</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2023-06, Vol.240, p.124460-124460, Article 124460
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_2803965207
source MEDLINE; Elsevier ScienceDirect Journals
subjects Carbon
Carbon foams
Kraft lignin
Lignin - chemistry
Lignin fractions
Phenols
Thermal decomposition. Electrochemical applications
title Selected Kraft lignin fractions as precursor for carbon foam: Structure-performance correlation and electrochemical applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selected%20Kraft%20lignin%20fractions%20as%20precursor%20for%20carbon%20foam:%20Structure-performance%20correlation%20and%20electrochemical%20applications&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Rodrigues,%20J%C3%A9ssica%20S.&rft.date=2023-06-15&rft.volume=240&rft.spage=124460&rft.epage=124460&rft.pages=124460-124460&rft.artnum=124460&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2023.124460&rft_dat=%3Cproquest_cross%3E2803965207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803965207&rft_id=info:pmid/37076061&rft_els_id=S0141813023013545&rfr_iscdi=true