Genetically optimized fuzzy decision trees

In this study, we are concerned with genetically optimized fuzzy decision trees (G-DTs). Decision trees are fundamental architectures of machine learning, pattern recognition, and system modeling. Starting with the generic decision tree with discrete or interval-valued attributes, we develop its fuz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2005-06, Vol.35 (3), p.633-641
Hauptverfasser: Pedrycz, W., Sosnowski, Z.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 3
container_start_page 633
container_title IEEE transactions on cybernetics
container_volume 35
creator Pedrycz, W.
Sosnowski, Z.A.
description In this study, we are concerned with genetically optimized fuzzy decision trees (G-DTs). Decision trees are fundamental architectures of machine learning, pattern recognition, and system modeling. Starting with the generic decision tree with discrete or interval-valued attributes, we develop its fuzzy set-based generalization. In this generalized structure we admit the values of the attributes that are represented by some membership functions. Such fuzzy decision trees are constructed in the setting of genetic optimization. The underlying genetic algorithm optimizes the parameters of the fuzzy sets associated with the individual nodes where they play a role of fuzzy "switches" by distributing a flow of processing completed within the tree. We discuss various forms of the fitness function that help capture the essence of the problem at hand (that could be either of classification nature when dealing with discrete outputs or regression-like when handling a continuous output variable). We quantify a nature of the generalization of the tree by studying an optimally adjusted spreads of the membership functions located at the nodes of the decision tree. A series of experiments exploiting synthetic and machine learning data is used to illustrate the performance of the G-DTs.
doi_str_mv 10.1109/TSMCB.2005.843975
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28034194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1430847</ieee_id><sourcerecordid>1671501258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-683ed506feadcae567f7dcf22b8a4d3634a53b20b87533b1f478713b61a46fd13</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRbK3-ABGkeBARUmey30ctfkHFg3peNskEImlTs8mh_fWutiB40NMMzPO-MDyMHSNMEMFevb48TW8mKYCcGMGtljtsiFZgAsKmu3EHwxMh0A7YQQjvAGDB6n02QGk1Wo5DdnlPC-qq3Nf1atwsu2perakYl_16vRoXlFehahbjriUKh2yv9HWgo-0csbe729fpQzJ7vn-cXs-SXCB0iTKcCgmqJF_knqTSpS7yMk0z40XBFRde8iyFzGjJeYal0EYjzxR6ocoC-Yidb3qXbfPRU-jcvAo51bVfUNMHlxpjuY1F_4PA4_Mighd_gqg0SsBUmoie_ULfm75dxH-dUVppCdZGCDdQ3jYhtFS6ZVvNfbtyCO7LjPs2477MuI2ZmDndFvfZnIqfxFZFBE42QEVEP2fBwQjNPwGpapAP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867675099</pqid></control><display><type>article</type><title>Genetically optimized fuzzy decision trees</title><source>IEEE Electronic Library (IEL)</source><creator>Pedrycz, W. ; Sosnowski, Z.A.</creator><creatorcontrib>Pedrycz, W. ; Sosnowski, Z.A.</creatorcontrib><description>In this study, we are concerned with genetically optimized fuzzy decision trees (G-DTs). Decision trees are fundamental architectures of machine learning, pattern recognition, and system modeling. Starting with the generic decision tree with discrete or interval-valued attributes, we develop its fuzzy set-based generalization. In this generalized structure we admit the values of the attributes that are represented by some membership functions. Such fuzzy decision trees are constructed in the setting of genetic optimization. The underlying genetic algorithm optimizes the parameters of the fuzzy sets associated with the individual nodes where they play a role of fuzzy "switches" by distributing a flow of processing completed within the tree. We discuss various forms of the fitness function that help capture the essence of the problem at hand (that could be either of classification nature when dealing with discrete outputs or regression-like when handling a continuous output variable). We quantify a nature of the generalization of the tree by studying an optimally adjusted spreads of the membership functions located at the nodes of the decision tree. A series of experiments exploiting synthetic and machine learning data is used to illustrate the performance of the G-DTs.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2005.843975</identifier><identifier>PMID: 15971931</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Artificial Intelligence ; Cluster Analysis ; Competitive intelligence ; Computational intelligence ; Computer Simulation ; Cybernetics ; Decision Support Techniques ; Decision trees ; Fuzzy ; fuzzy decision trees ; Fuzzy Logic ; Fuzzy set theory ; Fuzzy sets ; genetic algorithm (GA) ; Genetic algorithms ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Information Storage and Retrieval - methods ; Learning systems ; Machine learning ; Mathematical models ; Modeling ; Models, Biological ; Models, Statistical ; Numerical Analysis, Computer-Assisted ; Pattern recognition ; Pattern Recognition, Automated - methods ; propagation mechanisms ; Reproducibility of Results ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted ; Studies ; Topology ; Trees ; triangular norms and co-norms ; two-stage design</subject><ispartof>IEEE transactions on cybernetics, 2005-06, Vol.35 (3), p.633-641</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-683ed506feadcae567f7dcf22b8a4d3634a53b20b87533b1f478713b61a46fd13</citedby><cites>FETCH-LOGICAL-c410t-683ed506feadcae567f7dcf22b8a4d3634a53b20b87533b1f478713b61a46fd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1430847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1430847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15971931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedrycz, W.</creatorcontrib><creatorcontrib>Sosnowski, Z.A.</creatorcontrib><title>Genetically optimized fuzzy decision trees</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>In this study, we are concerned with genetically optimized fuzzy decision trees (G-DTs). Decision trees are fundamental architectures of machine learning, pattern recognition, and system modeling. Starting with the generic decision tree with discrete or interval-valued attributes, we develop its fuzzy set-based generalization. In this generalized structure we admit the values of the attributes that are represented by some membership functions. Such fuzzy decision trees are constructed in the setting of genetic optimization. The underlying genetic algorithm optimizes the parameters of the fuzzy sets associated with the individual nodes where they play a role of fuzzy "switches" by distributing a flow of processing completed within the tree. We discuss various forms of the fitness function that help capture the essence of the problem at hand (that could be either of classification nature when dealing with discrete outputs or regression-like when handling a continuous output variable). We quantify a nature of the generalization of the tree by studying an optimally adjusted spreads of the membership functions located at the nodes of the decision tree. A series of experiments exploiting synthetic and machine learning data is used to illustrate the performance of the G-DTs.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cluster Analysis</subject><subject>Competitive intelligence</subject><subject>Computational intelligence</subject><subject>Computer Simulation</subject><subject>Cybernetics</subject><subject>Decision Support Techniques</subject><subject>Decision trees</subject><subject>Fuzzy</subject><subject>fuzzy decision trees</subject><subject>Fuzzy Logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>propagation mechanisms</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Studies</subject><subject>Topology</subject><subject>Trees</subject><subject>triangular norms and co-norms</subject><subject>two-stage design</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1Lw0AQhhdRbK3-ABGkeBARUmey30ctfkHFg3peNskEImlTs8mh_fWutiB40NMMzPO-MDyMHSNMEMFevb48TW8mKYCcGMGtljtsiFZgAsKmu3EHwxMh0A7YQQjvAGDB6n02QGk1Wo5DdnlPC-qq3Nf1atwsu2perakYl_16vRoXlFehahbjriUKh2yv9HWgo-0csbe729fpQzJ7vn-cXs-SXCB0iTKcCgmqJF_knqTSpS7yMk0z40XBFRde8iyFzGjJeYal0EYjzxR6ocoC-Yidb3qXbfPRU-jcvAo51bVfUNMHlxpjuY1F_4PA4_Mighd_gqg0SsBUmoie_ULfm75dxH-dUVppCdZGCDdQ3jYhtFS6ZVvNfbtyCO7LjPs2477MuI2ZmDndFvfZnIqfxFZFBE42QEVEP2fBwQjNPwGpapAP</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Pedrycz, W.</creator><creator>Sosnowski, Z.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050601</creationdate><title>Genetically optimized fuzzy decision trees</title><author>Pedrycz, W. ; Sosnowski, Z.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-683ed506feadcae567f7dcf22b8a4d3634a53b20b87533b1f478713b61a46fd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cluster Analysis</topic><topic>Competitive intelligence</topic><topic>Computational intelligence</topic><topic>Computer Simulation</topic><topic>Cybernetics</topic><topic>Decision Support Techniques</topic><topic>Decision trees</topic><topic>Fuzzy</topic><topic>fuzzy decision trees</topic><topic>Fuzzy Logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>propagation mechanisms</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Studies</topic><topic>Topology</topic><topic>Trees</topic><topic>triangular norms and co-norms</topic><topic>two-stage design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedrycz, W.</creatorcontrib><creatorcontrib>Sosnowski, Z.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pedrycz, W.</au><au>Sosnowski, Z.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically optimized fuzzy decision trees</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>35</volume><issue>3</issue><spage>633</spage><epage>641</epage><pages>633-641</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>In this study, we are concerned with genetically optimized fuzzy decision trees (G-DTs). Decision trees are fundamental architectures of machine learning, pattern recognition, and system modeling. Starting with the generic decision tree with discrete or interval-valued attributes, we develop its fuzzy set-based generalization. In this generalized structure we admit the values of the attributes that are represented by some membership functions. Such fuzzy decision trees are constructed in the setting of genetic optimization. The underlying genetic algorithm optimizes the parameters of the fuzzy sets associated with the individual nodes where they play a role of fuzzy "switches" by distributing a flow of processing completed within the tree. We discuss various forms of the fitness function that help capture the essence of the problem at hand (that could be either of classification nature when dealing with discrete outputs or regression-like when handling a continuous output variable). We quantify a nature of the generalization of the tree by studying an optimally adjusted spreads of the membership functions located at the nodes of the decision tree. A series of experiments exploiting synthetic and machine learning data is used to illustrate the performance of the G-DTs.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>15971931</pmid><doi>10.1109/TSMCB.2005.843975</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2005-06, Vol.35 (3), p.633-641
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_proquest_miscellaneous_28034194
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Artificial Intelligence
Cluster Analysis
Competitive intelligence
Computational intelligence
Computer Simulation
Cybernetics
Decision Support Techniques
Decision trees
Fuzzy
fuzzy decision trees
Fuzzy Logic
Fuzzy set theory
Fuzzy sets
genetic algorithm (GA)
Genetic algorithms
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Information Storage and Retrieval - methods
Learning systems
Machine learning
Mathematical models
Modeling
Models, Biological
Models, Statistical
Numerical Analysis, Computer-Assisted
Pattern recognition
Pattern Recognition, Automated - methods
propagation mechanisms
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Studies
Topology
Trees
triangular norms and co-norms
two-stage design
title Genetically optimized fuzzy decision trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20optimized%20fuzzy%20decision%20trees&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Pedrycz,%20W.&rft.date=2005-06-01&rft.volume=35&rft.issue=3&rft.spage=633&rft.epage=641&rft.pages=633-641&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2005.843975&rft_dat=%3Cproquest_RIE%3E1671501258%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867675099&rft_id=info:pmid/15971931&rft_ieee_id=1430847&rfr_iscdi=true