Ultrafine FeF3·0.33H2O Nanocrystal-Doped Graphene Aerogel Cathode Materials for Advanced Lithium-Ion Batteries
FeF3 has been extensively studied as an alternative positive material owing to its superior specific capacity and low cost, but the low conductivity, large volume variation, and slow kinetics seriously hinder its commercialization. Here, we propose the in situ growth of ultrafine FeF3·0.33H2O NPs on...
Gespeichert in:
Veröffentlicht in: | Langmuir 2023-05, Vol.39 (17), p.6029-6037 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6037 |
---|---|
container_issue | 17 |
container_start_page | 6029 |
container_title | Langmuir |
container_volume | 39 |
creator | He, Dafang Cao, Da Lu, Junhong Zhu, Ye Huang, Jie Zhang, Yanlin He, Guangyu |
description | FeF3 has been extensively studied as an alternative positive material owing to its superior specific capacity and low cost, but the low conductivity, large volume variation, and slow kinetics seriously hinder its commercialization. Here, we propose the in situ growth of ultrafine FeF3·0.33H2O NPs on a three-dimensional reduced graphene oxide (3D RGO) aerogel with abundant pores by a facile freeze drying process followed by thermal annealing and fluorination. Within the FeF3·0.33H2O/RGO composites, the three-dimensional (3D) RGO aerogel and hierarchical porous structure ensure rapid diffusion of electrons/ions within the cathode, enabling good reversibility of FeF3. Benefiting from these advantages, a superior cycle behavior of 232 mAh g–1 under 0.1C over 100 cycles as well as outstanding rate performance is achieved. These results provide a promising approach for advanced cathode materials for Li-ion batteries. |
doi_str_mv | 10.1021/acs.langmuir.3c00035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2803327857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803327857</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-82d8742d020c6719769b68e22b260523a8637bb199581e3c35b8ce7241b35d2d3</originalsourceid><addsrcrecordid>eNo10L1OwzAQwHELgUQpvAGDR5YU-y6OnbEU-iEVutA5chK3TZXGxXaQeDJ2ngxXlOmk00-n05-Qe85GnAF_1JUftbrbHvrGjbBijKG4IAMugCVCgbwkAyZTTGSa4TW58X4fSY5pPiB23QanN01n6NRM8eebjRDnsKJvurOV-_JBt8mzPZqazpw-7kyEY-Ps1rR0osPO1oa-6mBco1tPN9bRcf2puyr6ZRN2TX9IFrajTzqcjPG35GoTpbk7zyFZT1_eJ_NkuZotJuNlogHykCiolUyhZsCqTPJcZnmZKQNQQsYEoFYZyrLkeS4UN1ihKFVlJKS8RFFDjUPy8Hf36OxHb3woDo2vTBszGdv7AhRDBKmEjJT90Zix2NvedfGxgrPi1LY4Lf_bFue2-AvOAW-S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803327857</pqid></control><display><type>article</type><title>Ultrafine FeF3·0.33H2O Nanocrystal-Doped Graphene Aerogel Cathode Materials for Advanced Lithium-Ion Batteries</title><source>American Chemical Society Journals</source><creator>He, Dafang ; Cao, Da ; Lu, Junhong ; Zhu, Ye ; Huang, Jie ; Zhang, Yanlin ; He, Guangyu</creator><creatorcontrib>He, Dafang ; Cao, Da ; Lu, Junhong ; Zhu, Ye ; Huang, Jie ; Zhang, Yanlin ; He, Guangyu</creatorcontrib><description>FeF3 has been extensively studied as an alternative positive material owing to its superior specific capacity and low cost, but the low conductivity, large volume variation, and slow kinetics seriously hinder its commercialization. Here, we propose the in situ growth of ultrafine FeF3·0.33H2O NPs on a three-dimensional reduced graphene oxide (3D RGO) aerogel with abundant pores by a facile freeze drying process followed by thermal annealing and fluorination. Within the FeF3·0.33H2O/RGO composites, the three-dimensional (3D) RGO aerogel and hierarchical porous structure ensure rapid diffusion of electrons/ions within the cathode, enabling good reversibility of FeF3. Benefiting from these advantages, a superior cycle behavior of 232 mAh g–1 under 0.1C over 100 cycles as well as outstanding rate performance is achieved. These results provide a promising approach for advanced cathode materials for Li-ion batteries.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.3c00035</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2023-05, Vol.39 (17), p.6029-6037</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4049-9729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.3c00035$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.3c00035$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>He, Dafang</creatorcontrib><creatorcontrib>Cao, Da</creatorcontrib><creatorcontrib>Lu, Junhong</creatorcontrib><creatorcontrib>Zhu, Ye</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Zhang, Yanlin</creatorcontrib><creatorcontrib>He, Guangyu</creatorcontrib><title>Ultrafine FeF3·0.33H2O Nanocrystal-Doped Graphene Aerogel Cathode Materials for Advanced Lithium-Ion Batteries</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>FeF3 has been extensively studied as an alternative positive material owing to its superior specific capacity and low cost, but the low conductivity, large volume variation, and slow kinetics seriously hinder its commercialization. Here, we propose the in situ growth of ultrafine FeF3·0.33H2O NPs on a three-dimensional reduced graphene oxide (3D RGO) aerogel with abundant pores by a facile freeze drying process followed by thermal annealing and fluorination. Within the FeF3·0.33H2O/RGO composites, the three-dimensional (3D) RGO aerogel and hierarchical porous structure ensure rapid diffusion of electrons/ions within the cathode, enabling good reversibility of FeF3. Benefiting from these advantages, a superior cycle behavior of 232 mAh g–1 under 0.1C over 100 cycles as well as outstanding rate performance is achieved. These results provide a promising approach for advanced cathode materials for Li-ion batteries.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo10L1OwzAQwHELgUQpvAGDR5YU-y6OnbEU-iEVutA5chK3TZXGxXaQeDJ2ngxXlOmk00-n05-Qe85GnAF_1JUftbrbHvrGjbBijKG4IAMugCVCgbwkAyZTTGSa4TW58X4fSY5pPiB23QanN01n6NRM8eebjRDnsKJvurOV-_JBt8mzPZqazpw-7kyEY-Ps1rR0osPO1oa-6mBco1tPN9bRcf2puyr6ZRN2TX9IFrajTzqcjPG35GoTpbk7zyFZT1_eJ_NkuZotJuNlogHykCiolUyhZsCqTPJcZnmZKQNQQsYEoFYZyrLkeS4UN1ihKFVlJKS8RFFDjUPy8Hf36OxHb3woDo2vTBszGdv7AhRDBKmEjJT90Zix2NvedfGxgrPi1LY4Lf_bFue2-AvOAW-S</recordid><startdate>20230502</startdate><enddate>20230502</enddate><creator>He, Dafang</creator><creator>Cao, Da</creator><creator>Lu, Junhong</creator><creator>Zhu, Ye</creator><creator>Huang, Jie</creator><creator>Zhang, Yanlin</creator><creator>He, Guangyu</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4049-9729</orcidid></search><sort><creationdate>20230502</creationdate><title>Ultrafine FeF3·0.33H2O Nanocrystal-Doped Graphene Aerogel Cathode Materials for Advanced Lithium-Ion Batteries</title><author>He, Dafang ; Cao, Da ; Lu, Junhong ; Zhu, Ye ; Huang, Jie ; Zhang, Yanlin ; He, Guangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-82d8742d020c6719769b68e22b260523a8637bb199581e3c35b8ce7241b35d2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Dafang</creatorcontrib><creatorcontrib>Cao, Da</creatorcontrib><creatorcontrib>Lu, Junhong</creatorcontrib><creatorcontrib>Zhu, Ye</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Zhang, Yanlin</creatorcontrib><creatorcontrib>He, Guangyu</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Dafang</au><au>Cao, Da</au><au>Lu, Junhong</au><au>Zhu, Ye</au><au>Huang, Jie</au><au>Zhang, Yanlin</au><au>He, Guangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafine FeF3·0.33H2O Nanocrystal-Doped Graphene Aerogel Cathode Materials for Advanced Lithium-Ion Batteries</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2023-05-02</date><risdate>2023</risdate><volume>39</volume><issue>17</issue><spage>6029</spage><epage>6037</epage><pages>6029-6037</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>FeF3 has been extensively studied as an alternative positive material owing to its superior specific capacity and low cost, but the low conductivity, large volume variation, and slow kinetics seriously hinder its commercialization. Here, we propose the in situ growth of ultrafine FeF3·0.33H2O NPs on a three-dimensional reduced graphene oxide (3D RGO) aerogel with abundant pores by a facile freeze drying process followed by thermal annealing and fluorination. Within the FeF3·0.33H2O/RGO composites, the three-dimensional (3D) RGO aerogel and hierarchical porous structure ensure rapid diffusion of electrons/ions within the cathode, enabling good reversibility of FeF3. Benefiting from these advantages, a superior cycle behavior of 232 mAh g–1 under 0.1C over 100 cycles as well as outstanding rate performance is achieved. These results provide a promising approach for advanced cathode materials for Li-ion batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.3c00035</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4049-9729</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2023-05, Vol.39 (17), p.6029-6037 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_2803327857 |
source | American Chemical Society Journals |
title | Ultrafine FeF3·0.33H2O Nanocrystal-Doped Graphene Aerogel Cathode Materials for Advanced Lithium-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafine%20FeF3%C2%B70.33H2O%20Nanocrystal-Doped%20Graphene%20Aerogel%20Cathode%20Materials%20for%20Advanced%20Lithium-Ion%20Batteries&rft.jtitle=Langmuir&rft.au=He,%20Dafang&rft.date=2023-05-02&rft.volume=39&rft.issue=17&rft.spage=6029&rft.epage=6037&rft.pages=6029-6037&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.3c00035&rft_dat=%3Cproquest_acs_j%3E2803327857%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803327857&rft_id=info:pmid/&rfr_iscdi=true |