The onset of transient convection in bottom heated porous media

The theory of transient convection in bottom heated porous media under constant heat flux (CHF) condition or fixed surface temperature (FST) condition is advanced and verified by computational fluid dynamics (CFD) simulations. The use of κ ∗ , instead of κ m tends to artificially inflate the value o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2003-07, Vol.46 (15), p.2857-2873
Hauptverfasser: Tan, Ka-Kheng, Sam, Torng, Jamaludin, Hishamuddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2873
container_issue 15
container_start_page 2857
container_title International journal of heat and mass transfer
container_volume 46
creator Tan, Ka-Kheng
Sam, Torng
Jamaludin, Hishamuddin
description The theory of transient convection in bottom heated porous media under constant heat flux (CHF) condition or fixed surface temperature (FST) condition is advanced and verified by computational fluid dynamics (CFD) simulations. The use of κ ∗ , instead of κ m tends to artificially inflate the value of Rayleigh number by about 30%. A new transient Rayleigh number for unsteady-state heat conduction was defined to predict the onset of transient convection in porous media, which were successfully simulated. The critical transient Rayleigh number from the simulation for CHF was about 29.60, which is close to the theoretical value of 27.1 calculated by Ribando and Torrance in 1976. In the case of FST, the critical transient Ra c was found to be 30.9, which is close to the theoretical value of 32.3. The critical times of onset for simulations were predicted with good accuracy. The prediction of the critical wavelengths of the emerging plumes were fair for the 2D simulations. Any experiment to verify the linear stability analysis for thermal instability must simultaneously concur in the three eigenvalue parameters, namely the Biot number, the critical wavenumber and the corresponding critical Rayleigh number, apart from the physical boundaries. The average maximum transient Nusselt number was found to be 3.41 for CHF and 3.5 for FST respectively.
doi_str_mv 10.1016/S0017-9310(03)00045-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28031312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931003000450</els_id><sourcerecordid>28031312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-6adb8f16195b79549160e7a5de9750cd947e0fc778151d8912ae0d6c057301c43</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKs_QchF0cPqzO5mszkVEV8geFDPIc3O0ki7qUla8N-b2qJHTzMD37w-xk4RrhCwuX4FQFmoCuECqksAqEUBe2yErVRFia3aZ6Nf5JAdxfixKaFuRmzyNiPuh0iJ-56nYIboaEjc-mFNNjk_cDfwqU_JL_iMTKKOL33wq8gX1DlzzA56M490sotj9n5_93b7WDy_PDzd3jwXthYyFY3ppm2PDSoxlUrUChsgaURHSgqwnaolQW-lbFFg1yosDUHXWBCyArR1NWbn27nL4D9XFJNeuGhpPjcD5WN02UKFFZYZFFvQBh9joF4vg1uY8KUR9EaX_tGlNy40VPpHV07G7Gy3wERr5n02YV38a65lW5etzNxky1H-du0o6GizMZtlhCxMd979s-kbYbR9WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28031312</pqid></control><display><type>article</type><title>The onset of transient convection in bottom heated porous media</title><source>Elsevier ScienceDirect Journals</source><creator>Tan, Ka-Kheng ; Sam, Torng ; Jamaludin, Hishamuddin</creator><creatorcontrib>Tan, Ka-Kheng ; Sam, Torng ; Jamaludin, Hishamuddin</creatorcontrib><description>The theory of transient convection in bottom heated porous media under constant heat flux (CHF) condition or fixed surface temperature (FST) condition is advanced and verified by computational fluid dynamics (CFD) simulations. The use of κ ∗ , instead of κ m tends to artificially inflate the value of Rayleigh number by about 30%. A new transient Rayleigh number for unsteady-state heat conduction was defined to predict the onset of transient convection in porous media, which were successfully simulated. The critical transient Rayleigh number from the simulation for CHF was about 29.60, which is close to the theoretical value of 27.1 calculated by Ribando and Torrance in 1976. In the case of FST, the critical transient Ra c was found to be 30.9, which is close to the theoretical value of 32.3. The critical times of onset for simulations were predicted with good accuracy. The prediction of the critical wavelengths of the emerging plumes were fair for the 2D simulations. Any experiment to verify the linear stability analysis for thermal instability must simultaneously concur in the three eigenvalue parameters, namely the Biot number, the critical wavenumber and the corresponding critical Rayleigh number, apart from the physical boundaries. The average maximum transient Nusselt number was found to be 3.41 for CHF and 3.5 for FST respectively.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(03)00045-0</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Constant heat flux ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fixed surface temperature ; Heat transfer ; Onset of convection ; Porous media ; Theoretical studies. Data and constants. Metering ; Transient Rayleigh number</subject><ispartof>International journal of heat and mass transfer, 2003-07, Vol.46 (15), p.2857-2873</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-6adb8f16195b79549160e7a5de9750cd947e0fc778151d8912ae0d6c057301c43</citedby><cites>FETCH-LOGICAL-c457t-6adb8f16195b79549160e7a5de9750cd947e0fc778151d8912ae0d6c057301c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931003000450$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14784287$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Ka-Kheng</creatorcontrib><creatorcontrib>Sam, Torng</creatorcontrib><creatorcontrib>Jamaludin, Hishamuddin</creatorcontrib><title>The onset of transient convection in bottom heated porous media</title><title>International journal of heat and mass transfer</title><description>The theory of transient convection in bottom heated porous media under constant heat flux (CHF) condition or fixed surface temperature (FST) condition is advanced and verified by computational fluid dynamics (CFD) simulations. The use of κ ∗ , instead of κ m tends to artificially inflate the value of Rayleigh number by about 30%. A new transient Rayleigh number for unsteady-state heat conduction was defined to predict the onset of transient convection in porous media, which were successfully simulated. The critical transient Rayleigh number from the simulation for CHF was about 29.60, which is close to the theoretical value of 27.1 calculated by Ribando and Torrance in 1976. In the case of FST, the critical transient Ra c was found to be 30.9, which is close to the theoretical value of 32.3. The critical times of onset for simulations were predicted with good accuracy. The prediction of the critical wavelengths of the emerging plumes were fair for the 2D simulations. Any experiment to verify the linear stability analysis for thermal instability must simultaneously concur in the three eigenvalue parameters, namely the Biot number, the critical wavenumber and the corresponding critical Rayleigh number, apart from the physical boundaries. The average maximum transient Nusselt number was found to be 3.41 for CHF and 3.5 for FST respectively.</description><subject>Applied sciences</subject><subject>Constant heat flux</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fixed surface temperature</subject><subject>Heat transfer</subject><subject>Onset of convection</subject><subject>Porous media</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Transient Rayleigh number</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKs_QchF0cPqzO5mszkVEV8geFDPIc3O0ki7qUla8N-b2qJHTzMD37w-xk4RrhCwuX4FQFmoCuECqksAqEUBe2yErVRFia3aZ6Nf5JAdxfixKaFuRmzyNiPuh0iJ-56nYIboaEjc-mFNNjk_cDfwqU_JL_iMTKKOL33wq8gX1DlzzA56M490sotj9n5_93b7WDy_PDzd3jwXthYyFY3ppm2PDSoxlUrUChsgaURHSgqwnaolQW-lbFFg1yosDUHXWBCyArR1NWbn27nL4D9XFJNeuGhpPjcD5WN02UKFFZYZFFvQBh9joF4vg1uY8KUR9EaX_tGlNy40VPpHV07G7Gy3wERr5n02YV38a65lW5etzNxky1H-du0o6GizMZtlhCxMd979s-kbYbR9WQ</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Tan, Ka-Kheng</creator><creator>Sam, Torng</creator><creator>Jamaludin, Hishamuddin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20030701</creationdate><title>The onset of transient convection in bottom heated porous media</title><author>Tan, Ka-Kheng ; Sam, Torng ; Jamaludin, Hishamuddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-6adb8f16195b79549160e7a5de9750cd947e0fc778151d8912ae0d6c057301c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Constant heat flux</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fixed surface temperature</topic><topic>Heat transfer</topic><topic>Onset of convection</topic><topic>Porous media</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Transient Rayleigh number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Ka-Kheng</creatorcontrib><creatorcontrib>Sam, Torng</creatorcontrib><creatorcontrib>Jamaludin, Hishamuddin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Ka-Kheng</au><au>Sam, Torng</au><au>Jamaludin, Hishamuddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The onset of transient convection in bottom heated porous media</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>46</volume><issue>15</issue><spage>2857</spage><epage>2873</epage><pages>2857-2873</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The theory of transient convection in bottom heated porous media under constant heat flux (CHF) condition or fixed surface temperature (FST) condition is advanced and verified by computational fluid dynamics (CFD) simulations. The use of κ ∗ , instead of κ m tends to artificially inflate the value of Rayleigh number by about 30%. A new transient Rayleigh number for unsteady-state heat conduction was defined to predict the onset of transient convection in porous media, which were successfully simulated. The critical transient Rayleigh number from the simulation for CHF was about 29.60, which is close to the theoretical value of 27.1 calculated by Ribando and Torrance in 1976. In the case of FST, the critical transient Ra c was found to be 30.9, which is close to the theoretical value of 32.3. The critical times of onset for simulations were predicted with good accuracy. The prediction of the critical wavelengths of the emerging plumes were fair for the 2D simulations. Any experiment to verify the linear stability analysis for thermal instability must simultaneously concur in the three eigenvalue parameters, namely the Biot number, the critical wavenumber and the corresponding critical Rayleigh number, apart from the physical boundaries. The average maximum transient Nusselt number was found to be 3.41 for CHF and 3.5 for FST respectively.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0017-9310(03)00045-0</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2003-07, Vol.46 (15), p.2857-2873
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_28031312
source Elsevier ScienceDirect Journals
subjects Applied sciences
Constant heat flux
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fixed surface temperature
Heat transfer
Onset of convection
Porous media
Theoretical studies. Data and constants. Metering
Transient Rayleigh number
title The onset of transient convection in bottom heated porous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20onset%20of%20transient%20convection%20in%20bottom%20heated%20porous%20media&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Tan,%20Ka-Kheng&rft.date=2003-07-01&rft.volume=46&rft.issue=15&rft.spage=2857&rft.epage=2873&rft.pages=2857-2873&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(03)00045-0&rft_dat=%3Cproquest_cross%3E28031312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28031312&rft_id=info:pmid/&rft_els_id=S0017931003000450&rfr_iscdi=true