The onset of transient convection in bottom heated porous media
The theory of transient convection in bottom heated porous media under constant heat flux (CHF) condition or fixed surface temperature (FST) condition is advanced and verified by computational fluid dynamics (CFD) simulations. The use of κ ∗ , instead of κ m tends to artificially inflate the value o...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2003-07, Vol.46 (15), p.2857-2873 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2873 |
---|---|
container_issue | 15 |
container_start_page | 2857 |
container_title | International journal of heat and mass transfer |
container_volume | 46 |
creator | Tan, Ka-Kheng Sam, Torng Jamaludin, Hishamuddin |
description | The theory of transient convection in bottom heated porous media under constant heat flux (CHF) condition or fixed surface temperature (FST) condition is advanced and verified by computational fluid dynamics (CFD) simulations. The use of
κ
∗
, instead of
κ
m tends to artificially inflate the value of Rayleigh number by about 30%. A new transient Rayleigh number for unsteady-state heat conduction was defined to predict the onset of transient convection in porous media, which were successfully simulated. The critical transient Rayleigh number from the simulation for CHF was about 29.60, which is close to the theoretical value of 27.1 calculated by Ribando and Torrance in 1976. In the case of FST, the critical transient
Ra
c was found to be 30.9, which is close to the theoretical value of 32.3. The critical times of onset for simulations were predicted with good accuracy. The prediction of the critical wavelengths of the emerging plumes were fair for the 2D simulations. Any experiment to verify the linear stability analysis for thermal instability must simultaneously concur in the three eigenvalue parameters, namely the Biot number, the critical wavenumber and the corresponding critical Rayleigh number, apart from the physical boundaries. The average maximum transient Nusselt number was found to be 3.41 for CHF and 3.5 for FST respectively. |
doi_str_mv | 10.1016/S0017-9310(03)00045-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28031312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931003000450</els_id><sourcerecordid>28031312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-6adb8f16195b79549160e7a5de9750cd947e0fc778151d8912ae0d6c057301c43</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKs_QchF0cPqzO5mszkVEV8geFDPIc3O0ki7qUla8N-b2qJHTzMD37w-xk4RrhCwuX4FQFmoCuECqksAqEUBe2yErVRFia3aZ6Nf5JAdxfixKaFuRmzyNiPuh0iJ-56nYIboaEjc-mFNNjk_cDfwqU_JL_iMTKKOL33wq8gX1DlzzA56M490sotj9n5_93b7WDy_PDzd3jwXthYyFY3ppm2PDSoxlUrUChsgaURHSgqwnaolQW-lbFFg1yosDUHXWBCyArR1NWbn27nL4D9XFJNeuGhpPjcD5WN02UKFFZYZFFvQBh9joF4vg1uY8KUR9EaX_tGlNy40VPpHV07G7Gy3wERr5n02YV38a65lW5etzNxky1H-du0o6GizMZtlhCxMd979s-kbYbR9WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28031312</pqid></control><display><type>article</type><title>The onset of transient convection in bottom heated porous media</title><source>Elsevier ScienceDirect Journals</source><creator>Tan, Ka-Kheng ; Sam, Torng ; Jamaludin, Hishamuddin</creator><creatorcontrib>Tan, Ka-Kheng ; Sam, Torng ; Jamaludin, Hishamuddin</creatorcontrib><description>The theory of transient convection in bottom heated porous media under constant heat flux (CHF) condition or fixed surface temperature (FST) condition is advanced and verified by computational fluid dynamics (CFD) simulations. The use of
κ
∗
, instead of
κ
m tends to artificially inflate the value of Rayleigh number by about 30%. A new transient Rayleigh number for unsteady-state heat conduction was defined to predict the onset of transient convection in porous media, which were successfully simulated. The critical transient Rayleigh number from the simulation for CHF was about 29.60, which is close to the theoretical value of 27.1 calculated by Ribando and Torrance in 1976. In the case of FST, the critical transient
Ra
c was found to be 30.9, which is close to the theoretical value of 32.3. The critical times of onset for simulations were predicted with good accuracy. The prediction of the critical wavelengths of the emerging plumes were fair for the 2D simulations. Any experiment to verify the linear stability analysis for thermal instability must simultaneously concur in the three eigenvalue parameters, namely the Biot number, the critical wavenumber and the corresponding critical Rayleigh number, apart from the physical boundaries. The average maximum transient Nusselt number was found to be 3.41 for CHF and 3.5 for FST respectively.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(03)00045-0</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Constant heat flux ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fixed surface temperature ; Heat transfer ; Onset of convection ; Porous media ; Theoretical studies. Data and constants. Metering ; Transient Rayleigh number</subject><ispartof>International journal of heat and mass transfer, 2003-07, Vol.46 (15), p.2857-2873</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-6adb8f16195b79549160e7a5de9750cd947e0fc778151d8912ae0d6c057301c43</citedby><cites>FETCH-LOGICAL-c457t-6adb8f16195b79549160e7a5de9750cd947e0fc778151d8912ae0d6c057301c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931003000450$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14784287$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Ka-Kheng</creatorcontrib><creatorcontrib>Sam, Torng</creatorcontrib><creatorcontrib>Jamaludin, Hishamuddin</creatorcontrib><title>The onset of transient convection in bottom heated porous media</title><title>International journal of heat and mass transfer</title><description>The theory of transient convection in bottom heated porous media under constant heat flux (CHF) condition or fixed surface temperature (FST) condition is advanced and verified by computational fluid dynamics (CFD) simulations. The use of
κ
∗
, instead of
κ
m tends to artificially inflate the value of Rayleigh number by about 30%. A new transient Rayleigh number for unsteady-state heat conduction was defined to predict the onset of transient convection in porous media, which were successfully simulated. The critical transient Rayleigh number from the simulation for CHF was about 29.60, which is close to the theoretical value of 27.1 calculated by Ribando and Torrance in 1976. In the case of FST, the critical transient
Ra
c was found to be 30.9, which is close to the theoretical value of 32.3. The critical times of onset for simulations were predicted with good accuracy. The prediction of the critical wavelengths of the emerging plumes were fair for the 2D simulations. Any experiment to verify the linear stability analysis for thermal instability must simultaneously concur in the three eigenvalue parameters, namely the Biot number, the critical wavenumber and the corresponding critical Rayleigh number, apart from the physical boundaries. The average maximum transient Nusselt number was found to be 3.41 for CHF and 3.5 for FST respectively.</description><subject>Applied sciences</subject><subject>Constant heat flux</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fixed surface temperature</subject><subject>Heat transfer</subject><subject>Onset of convection</subject><subject>Porous media</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Transient Rayleigh number</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKs_QchF0cPqzO5mszkVEV8geFDPIc3O0ki7qUla8N-b2qJHTzMD37w-xk4RrhCwuX4FQFmoCuECqksAqEUBe2yErVRFia3aZ6Nf5JAdxfixKaFuRmzyNiPuh0iJ-56nYIboaEjc-mFNNjk_cDfwqU_JL_iMTKKOL33wq8gX1DlzzA56M490sotj9n5_93b7WDy_PDzd3jwXthYyFY3ppm2PDSoxlUrUChsgaURHSgqwnaolQW-lbFFg1yosDUHXWBCyArR1NWbn27nL4D9XFJNeuGhpPjcD5WN02UKFFZYZFFvQBh9joF4vg1uY8KUR9EaX_tGlNy40VPpHV07G7Gy3wERr5n02YV38a65lW5etzNxky1H-du0o6GizMZtlhCxMd979s-kbYbR9WQ</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Tan, Ka-Kheng</creator><creator>Sam, Torng</creator><creator>Jamaludin, Hishamuddin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20030701</creationdate><title>The onset of transient convection in bottom heated porous media</title><author>Tan, Ka-Kheng ; Sam, Torng ; Jamaludin, Hishamuddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-6adb8f16195b79549160e7a5de9750cd947e0fc778151d8912ae0d6c057301c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Constant heat flux</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fixed surface temperature</topic><topic>Heat transfer</topic><topic>Onset of convection</topic><topic>Porous media</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Transient Rayleigh number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Ka-Kheng</creatorcontrib><creatorcontrib>Sam, Torng</creatorcontrib><creatorcontrib>Jamaludin, Hishamuddin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Ka-Kheng</au><au>Sam, Torng</au><au>Jamaludin, Hishamuddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The onset of transient convection in bottom heated porous media</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>46</volume><issue>15</issue><spage>2857</spage><epage>2873</epage><pages>2857-2873</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The theory of transient convection in bottom heated porous media under constant heat flux (CHF) condition or fixed surface temperature (FST) condition is advanced and verified by computational fluid dynamics (CFD) simulations. The use of
κ
∗
, instead of
κ
m tends to artificially inflate the value of Rayleigh number by about 30%. A new transient Rayleigh number for unsteady-state heat conduction was defined to predict the onset of transient convection in porous media, which were successfully simulated. The critical transient Rayleigh number from the simulation for CHF was about 29.60, which is close to the theoretical value of 27.1 calculated by Ribando and Torrance in 1976. In the case of FST, the critical transient
Ra
c was found to be 30.9, which is close to the theoretical value of 32.3. The critical times of onset for simulations were predicted with good accuracy. The prediction of the critical wavelengths of the emerging plumes were fair for the 2D simulations. Any experiment to verify the linear stability analysis for thermal instability must simultaneously concur in the three eigenvalue parameters, namely the Biot number, the critical wavenumber and the corresponding critical Rayleigh number, apart from the physical boundaries. The average maximum transient Nusselt number was found to be 3.41 for CHF and 3.5 for FST respectively.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0017-9310(03)00045-0</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2003-07, Vol.46 (15), p.2857-2873 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_28031312 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Constant heat flux Energy Energy. Thermal use of fuels Exact sciences and technology Fixed surface temperature Heat transfer Onset of convection Porous media Theoretical studies. Data and constants. Metering Transient Rayleigh number |
title | The onset of transient convection in bottom heated porous media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20onset%20of%20transient%20convection%20in%20bottom%20heated%20porous%20media&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Tan,%20Ka-Kheng&rft.date=2003-07-01&rft.volume=46&rft.issue=15&rft.spage=2857&rft.epage=2873&rft.pages=2857-2873&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(03)00045-0&rft_dat=%3Cproquest_cross%3E28031312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28031312&rft_id=info:pmid/&rft_els_id=S0017931003000450&rfr_iscdi=true |