Mapping the patent landscape of medical machine learning

Patent office data show robust and rising patenting of AI inventions in the medical field, contrary to fears that medical machine learning patents might be largely unavailable because of challenges to their subject-matter eligibility.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2023-04, Vol.41 (4), p.461-468
Hauptverfasser: Aboy, Mateo, Price, W. Nicholson, Raker, Seth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 4
container_start_page 461
container_title Nature biotechnology
container_volume 41
creator Aboy, Mateo
Price, W. Nicholson
Raker, Seth
description Patent office data show robust and rising patenting of AI inventions in the medical field, contrary to fears that medical machine learning patents might be largely unavailable because of challenges to their subject-matter eligibility.
doi_str_mv 10.1038/s41587-023-01735-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2802886031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802886031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f8bedafc42159d244ef4f3cab2d3caa2d3b501d8a4f0f442fa37dab13b9d72dc3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwAgwoEgtLwPc4I6q4SSAWmC3HlzZV4gQ7GXh73KaAxMBybOl8_zlHHwDnCF4jSMRNpIiJIoeY5BAVhOX8AMwRozxHvOSH6Q-3bcT4DJzEuIEQcsr5MZiRAvKSCDYH4kX1fe1X2bC2Wa8G64esUd5ErXqbdS5rram1arJW6XXtbdZYFXwKnIIjp5poz_bvArzf370tH_Pn14en5e1zrknBhtyJyhrlNMWIlQZTah11RKsKm1RVqhWDyAhFHXSUYqdIYVSFSFWaAhtNFuBqmtuH7mO0cZBtHbVt0pG2G6PEAmIhOCQooZd_0E03Bp-u21GoLCncUniidOhiDNbJPtStCp8SQbn1KievMnmVO6-Sp9DFfvRYJSM_kW-RCSATEFPLr2z43f3P2C9kjoLC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802199401</pqid></control><display><type>article</type><title>Mapping the patent landscape of medical machine learning</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Aboy, Mateo ; Price, W. Nicholson ; Raker, Seth</creator><creatorcontrib>Aboy, Mateo ; Price, W. Nicholson ; Raker, Seth</creatorcontrib><description>Patent office data show robust and rising patenting of AI inventions in the medical field, contrary to fears that medical machine learning patents might be largely unavailable because of challenges to their subject-matter eligibility.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-023-01735-6</identifier><identifier>PMID: 37069385</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>706/648/270 ; 706/689/280 ; 706/703/270 ; Agriculture ; Artificial intelligence ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Education, Medical ; Inventions ; Inventors ; Learning algorithms ; Life Sciences ; Machine Learning ; Neural networks</subject><ispartof>Nature biotechnology, 2023-04, Vol.41 (4), p.461-468</ispartof><rights>Springer Nature America, Inc. 2023</rights><rights>Springer Nature America, Inc. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f8bedafc42159d244ef4f3cab2d3caa2d3b501d8a4f0f442fa37dab13b9d72dc3</citedby><cites>FETCH-LOGICAL-c375t-f8bedafc42159d244ef4f3cab2d3caa2d3b501d8a4f0f442fa37dab13b9d72dc3</cites><orcidid>0000-0003-0729-290X ; 0000-0002-5168-4321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-023-01735-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-023-01735-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37069385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aboy, Mateo</creatorcontrib><creatorcontrib>Price, W. Nicholson</creatorcontrib><creatorcontrib>Raker, Seth</creatorcontrib><title>Mapping the patent landscape of medical machine learning</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Patent office data show robust and rising patenting of AI inventions in the medical field, contrary to fears that medical machine learning patents might be largely unavailable because of challenges to their subject-matter eligibility.</description><subject>706/648/270</subject><subject>706/689/280</subject><subject>706/703/270</subject><subject>Agriculture</subject><subject>Artificial intelligence</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Education, Medical</subject><subject>Inventions</subject><subject>Inventors</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Neural networks</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOwzAUhi0EoqXwAgwoEgtLwPc4I6q4SSAWmC3HlzZV4gQ7GXh73KaAxMBybOl8_zlHHwDnCF4jSMRNpIiJIoeY5BAVhOX8AMwRozxHvOSH6Q-3bcT4DJzEuIEQcsr5MZiRAvKSCDYH4kX1fe1X2bC2Wa8G64esUd5ErXqbdS5rram1arJW6XXtbdZYFXwKnIIjp5poz_bvArzf370tH_Pn14en5e1zrknBhtyJyhrlNMWIlQZTah11RKsKm1RVqhWDyAhFHXSUYqdIYVSFSFWaAhtNFuBqmtuH7mO0cZBtHbVt0pG2G6PEAmIhOCQooZd_0E03Bp-u21GoLCncUniidOhiDNbJPtStCp8SQbn1KievMnmVO6-Sp9DFfvRYJSM_kW-RCSATEFPLr2z43f3P2C9kjoLC</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Aboy, Mateo</creator><creator>Price, W. Nicholson</creator><creator>Raker, Seth</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0729-290X</orcidid><orcidid>https://orcid.org/0000-0002-5168-4321</orcidid></search><sort><creationdate>20230401</creationdate><title>Mapping the patent landscape of medical machine learning</title><author>Aboy, Mateo ; Price, W. Nicholson ; Raker, Seth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f8bedafc42159d244ef4f3cab2d3caa2d3b501d8a4f0f442fa37dab13b9d72dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>706/648/270</topic><topic>706/689/280</topic><topic>706/703/270</topic><topic>Agriculture</topic><topic>Artificial intelligence</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Education, Medical</topic><topic>Inventions</topic><topic>Inventors</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aboy, Mateo</creatorcontrib><creatorcontrib>Price, W. Nicholson</creatorcontrib><creatorcontrib>Raker, Seth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboy, Mateo</au><au>Price, W. Nicholson</au><au>Raker, Seth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the patent landscape of medical machine learning</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>41</volume><issue>4</issue><spage>461</spage><epage>468</epage><pages>461-468</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Patent office data show robust and rising patenting of AI inventions in the medical field, contrary to fears that medical machine learning patents might be largely unavailable because of challenges to their subject-matter eligibility.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37069385</pmid><doi>10.1038/s41587-023-01735-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0729-290X</orcidid><orcidid>https://orcid.org/0000-0002-5168-4321</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2023-04, Vol.41 (4), p.461-468
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_miscellaneous_2802886031
source MEDLINE; SpringerLink Journals; Nature
subjects 706/648/270
706/689/280
706/703/270
Agriculture
Artificial intelligence
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Education, Medical
Inventions
Inventors
Learning algorithms
Life Sciences
Machine Learning
Neural networks
title Mapping the patent landscape of medical machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20patent%20landscape%20of%20medical%20machine%20learning&rft.jtitle=Nature%20biotechnology&rft.au=Aboy,%20Mateo&rft.date=2023-04-01&rft.volume=41&rft.issue=4&rft.spage=461&rft.epage=468&rft.pages=461-468&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-023-01735-6&rft_dat=%3Cproquest_cross%3E2802886031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802199401&rft_id=info:pmid/37069385&rfr_iscdi=true