Mapping the patent landscape of medical machine learning
Patent office data show robust and rising patenting of AI inventions in the medical field, contrary to fears that medical machine learning patents might be largely unavailable because of challenges to their subject-matter eligibility.
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2023-04, Vol.41 (4), p.461-468 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | 4 |
container_start_page | 461 |
container_title | Nature biotechnology |
container_volume | 41 |
creator | Aboy, Mateo Price, W. Nicholson Raker, Seth |
description | Patent office data show robust and rising patenting of AI inventions in the medical field, contrary to fears that medical machine learning patents might be largely unavailable because of challenges to their subject-matter eligibility. |
doi_str_mv | 10.1038/s41587-023-01735-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2802886031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802886031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f8bedafc42159d244ef4f3cab2d3caa2d3b501d8a4f0f442fa37dab13b9d72dc3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwAgwoEgtLwPc4I6q4SSAWmC3HlzZV4gQ7GXh73KaAxMBybOl8_zlHHwDnCF4jSMRNpIiJIoeY5BAVhOX8AMwRozxHvOSH6Q-3bcT4DJzEuIEQcsr5MZiRAvKSCDYH4kX1fe1X2bC2Wa8G64esUd5ErXqbdS5rram1arJW6XXtbdZYFXwKnIIjp5poz_bvArzf370tH_Pn14en5e1zrknBhtyJyhrlNMWIlQZTah11RKsKm1RVqhWDyAhFHXSUYqdIYVSFSFWaAhtNFuBqmtuH7mO0cZBtHbVt0pG2G6PEAmIhOCQooZd_0E03Bp-u21GoLCncUniidOhiDNbJPtStCp8SQbn1KievMnmVO6-Sp9DFfvRYJSM_kW-RCSATEFPLr2z43f3P2C9kjoLC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802199401</pqid></control><display><type>article</type><title>Mapping the patent landscape of medical machine learning</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Aboy, Mateo ; Price, W. Nicholson ; Raker, Seth</creator><creatorcontrib>Aboy, Mateo ; Price, W. Nicholson ; Raker, Seth</creatorcontrib><description>Patent office data show robust and rising patenting of AI inventions in the medical field, contrary to fears that medical machine learning patents might be largely unavailable because of challenges to their subject-matter eligibility.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-023-01735-6</identifier><identifier>PMID: 37069385</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>706/648/270 ; 706/689/280 ; 706/703/270 ; Agriculture ; Artificial intelligence ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Education, Medical ; Inventions ; Inventors ; Learning algorithms ; Life Sciences ; Machine Learning ; Neural networks</subject><ispartof>Nature biotechnology, 2023-04, Vol.41 (4), p.461-468</ispartof><rights>Springer Nature America, Inc. 2023</rights><rights>Springer Nature America, Inc. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f8bedafc42159d244ef4f3cab2d3caa2d3b501d8a4f0f442fa37dab13b9d72dc3</citedby><cites>FETCH-LOGICAL-c375t-f8bedafc42159d244ef4f3cab2d3caa2d3b501d8a4f0f442fa37dab13b9d72dc3</cites><orcidid>0000-0003-0729-290X ; 0000-0002-5168-4321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-023-01735-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-023-01735-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37069385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aboy, Mateo</creatorcontrib><creatorcontrib>Price, W. Nicholson</creatorcontrib><creatorcontrib>Raker, Seth</creatorcontrib><title>Mapping the patent landscape of medical machine learning</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Patent office data show robust and rising patenting of AI inventions in the medical field, contrary to fears that medical machine learning patents might be largely unavailable because of challenges to their subject-matter eligibility.</description><subject>706/648/270</subject><subject>706/689/280</subject><subject>706/703/270</subject><subject>Agriculture</subject><subject>Artificial intelligence</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Education, Medical</subject><subject>Inventions</subject><subject>Inventors</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Neural networks</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOwzAUhi0EoqXwAgwoEgtLwPc4I6q4SSAWmC3HlzZV4gQ7GXh73KaAxMBybOl8_zlHHwDnCF4jSMRNpIiJIoeY5BAVhOX8AMwRozxHvOSH6Q-3bcT4DJzEuIEQcsr5MZiRAvKSCDYH4kX1fe1X2bC2Wa8G64esUd5ErXqbdS5rram1arJW6XXtbdZYFXwKnIIjp5poz_bvArzf370tH_Pn14en5e1zrknBhtyJyhrlNMWIlQZTah11RKsKm1RVqhWDyAhFHXSUYqdIYVSFSFWaAhtNFuBqmtuH7mO0cZBtHbVt0pG2G6PEAmIhOCQooZd_0E03Bp-u21GoLCncUniidOhiDNbJPtStCp8SQbn1KievMnmVO6-Sp9DFfvRYJSM_kW-RCSATEFPLr2z43f3P2C9kjoLC</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Aboy, Mateo</creator><creator>Price, W. Nicholson</creator><creator>Raker, Seth</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0729-290X</orcidid><orcidid>https://orcid.org/0000-0002-5168-4321</orcidid></search><sort><creationdate>20230401</creationdate><title>Mapping the patent landscape of medical machine learning</title><author>Aboy, Mateo ; Price, W. Nicholson ; Raker, Seth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f8bedafc42159d244ef4f3cab2d3caa2d3b501d8a4f0f442fa37dab13b9d72dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>706/648/270</topic><topic>706/689/280</topic><topic>706/703/270</topic><topic>Agriculture</topic><topic>Artificial intelligence</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Education, Medical</topic><topic>Inventions</topic><topic>Inventors</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aboy, Mateo</creatorcontrib><creatorcontrib>Price, W. Nicholson</creatorcontrib><creatorcontrib>Raker, Seth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboy, Mateo</au><au>Price, W. Nicholson</au><au>Raker, Seth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the patent landscape of medical machine learning</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>41</volume><issue>4</issue><spage>461</spage><epage>468</epage><pages>461-468</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Patent office data show robust and rising patenting of AI inventions in the medical field, contrary to fears that medical machine learning patents might be largely unavailable because of challenges to their subject-matter eligibility.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37069385</pmid><doi>10.1038/s41587-023-01735-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0729-290X</orcidid><orcidid>https://orcid.org/0000-0002-5168-4321</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2023-04, Vol.41 (4), p.461-468 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_2802886031 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 706/648/270 706/689/280 706/703/270 Agriculture Artificial intelligence Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Education, Medical Inventions Inventors Learning algorithms Life Sciences Machine Learning Neural networks |
title | Mapping the patent landscape of medical machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20patent%20landscape%20of%20medical%20machine%20learning&rft.jtitle=Nature%20biotechnology&rft.au=Aboy,%20Mateo&rft.date=2023-04-01&rft.volume=41&rft.issue=4&rft.spage=461&rft.epage=468&rft.pages=461-468&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-023-01735-6&rft_dat=%3Cproquest_cross%3E2802886031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802199401&rft_id=info:pmid/37069385&rfr_iscdi=true |