A comparative study of in vitro dose–response estimation under extreme observations

Quantifying drug potency, which requires an accurate estimation of dose–response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median–effect equation to describe the dose–response curve is vulnerable to ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2024-01, Vol.66 (1), p.e2200092-n/a
Hauptverfasser: Fang, Xinying, Zhou, Shouhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e2200092
container_title Biometrical journal
container_volume 66
creator Fang, Xinying
Zhou, Shouhao
description Quantifying drug potency, which requires an accurate estimation of dose–response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median–effect equation to describe the dose–response curve is vulnerable to extreme observations in common experimental data. To facilitate appropriate statistical inference, many powerful estimation tools have been developed in R, including various dose–response packages based on the nonlinear least squares method with different optimization strategies. Recently, beta regression‐based methods have also been introduced in estimation of the median–effect equation. In theory, they can overcome nonnormality, heteroscedasticity, and asymmetry and accommodate flexible robust frameworks and coefficients penalization. To identify a reliable estimation method(s) to estimate dose–response curves even with extreme observations, we conducted a comparative study to review 14 different tools in R and examine their robustness and efficiency via Monte Carlo simulation under a list of comprehensive scenarios. The simulation results demonstrate that penalized beta regression using the mgcv package outperforms other methods in terms of stable, accurate estimation, and reliable uncertainty quantification.
doi_str_mv 10.1002/bimj.202200092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2802883992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802883992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4082-2de48085cd6d8d793d8cb1560da8e813066b04d592e27d873a8515d3506c2853</originalsourceid><addsrcrecordid>eNqF0MFO4zAQBmBrxQpKlytHZIkLl3TH49hxjlABywrEpXu2kngqpWriYieF3ngH3pAnIaUsBy6c5uDPv2Z-xo4FTAQA_i7rZjFBQASAHH-wkVAokhSk3mMjkCgTadLsgB3GuNgSSHGfHcgMtBEmH7F_57zyzaoIRVeviceudxvu57xu-brugufOR3p9fgkUV76NxCl2dTNg3_K-dRQ4PXWBGuK-jBTW7y_xF_s5L5aRjj7mmM2uLmfTP8nt_fXN9Pw2qVIwmKCj1IBRldPOuCyXzlSlUBpcYcgICVqXkDqVI2HmTCYLo4RyUoGu0Cg5Zme72FXwD_2wmW3qWNFyWbTk-2jRABoj8xwHevqFLnwf2mE5i7nIpcpQy0FNdqoKPsZAc7sKw7VhYwXYbd9227f97Hv4cPIR25cNuU_-v-ABpDvwWC9p802cvbi5-4upRvkGWY2Lxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919357263</pqid></control><display><type>article</type><title>A comparative study of in vitro dose–response estimation under extreme observations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fang, Xinying ; Zhou, Shouhao</creator><creatorcontrib>Fang, Xinying ; Zhou, Shouhao</creatorcontrib><description>Quantifying drug potency, which requires an accurate estimation of dose–response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median–effect equation to describe the dose–response curve is vulnerable to extreme observations in common experimental data. To facilitate appropriate statistical inference, many powerful estimation tools have been developed in R, including various dose–response packages based on the nonlinear least squares method with different optimization strategies. Recently, beta regression‐based methods have also been introduced in estimation of the median–effect equation. In theory, they can overcome nonnormality, heteroscedasticity, and asymmetry and accommodate flexible robust frameworks and coefficients penalization. To identify a reliable estimation method(s) to estimate dose–response curves even with extreme observations, we conducted a comparative study to review 14 different tools in R and examine their robustness and efficiency via Monte Carlo simulation under a list of comprehensive scenarios. The simulation results demonstrate that penalized beta regression using the mgcv package outperforms other methods in terms of stable, accurate estimation, and reliable uncertainty quantification.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202200092</identifier><identifier>PMID: 37068189</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>beta regression ; Comparative studies ; Computer Simulation ; Drug development ; Drug dosages ; Least squares method ; median effect equation ; Medical research ; Monte Carlo Method ; Monte Carlo simulation ; nonlinear regression ; penalized regression ; Regression Analysis ; robust dose–response estimation ; Statistical analysis ; Statistical inference ; Statistical methods ; Uncertainty</subject><ispartof>Biometrical journal, 2024-01, Vol.66 (1), p.e2200092-n/a</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2023 The Authors. Biometrical Journal published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4082-2de48085cd6d8d793d8cb1560da8e813066b04d592e27d873a8515d3506c2853</citedby><cites>FETCH-LOGICAL-c4082-2de48085cd6d8d793d8cb1560da8e813066b04d592e27d873a8515d3506c2853</cites><orcidid>0000-0001-9121-5717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202200092$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202200092$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37068189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Xinying</creatorcontrib><creatorcontrib>Zhou, Shouhao</creatorcontrib><title>A comparative study of in vitro dose–response estimation under extreme observations</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Quantifying drug potency, which requires an accurate estimation of dose–response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median–effect equation to describe the dose–response curve is vulnerable to extreme observations in common experimental data. To facilitate appropriate statistical inference, many powerful estimation tools have been developed in R, including various dose–response packages based on the nonlinear least squares method with different optimization strategies. Recently, beta regression‐based methods have also been introduced in estimation of the median–effect equation. In theory, they can overcome nonnormality, heteroscedasticity, and asymmetry and accommodate flexible robust frameworks and coefficients penalization. To identify a reliable estimation method(s) to estimate dose–response curves even with extreme observations, we conducted a comparative study to review 14 different tools in R and examine their robustness and efficiency via Monte Carlo simulation under a list of comprehensive scenarios. The simulation results demonstrate that penalized beta regression using the mgcv package outperforms other methods in terms of stable, accurate estimation, and reliable uncertainty quantification.</description><subject>beta regression</subject><subject>Comparative studies</subject><subject>Computer Simulation</subject><subject>Drug development</subject><subject>Drug dosages</subject><subject>Least squares method</subject><subject>median effect equation</subject><subject>Medical research</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>nonlinear regression</subject><subject>penalized regression</subject><subject>Regression Analysis</subject><subject>robust dose–response estimation</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Uncertainty</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqF0MFO4zAQBmBrxQpKlytHZIkLl3TH49hxjlABywrEpXu2kngqpWriYieF3ngH3pAnIaUsBy6c5uDPv2Z-xo4FTAQA_i7rZjFBQASAHH-wkVAokhSk3mMjkCgTadLsgB3GuNgSSHGfHcgMtBEmH7F_57zyzaoIRVeviceudxvu57xu-brugufOR3p9fgkUV76NxCl2dTNg3_K-dRQ4PXWBGuK-jBTW7y_xF_s5L5aRjj7mmM2uLmfTP8nt_fXN9Pw2qVIwmKCj1IBRldPOuCyXzlSlUBpcYcgICVqXkDqVI2HmTCYLo4RyUoGu0Cg5Zme72FXwD_2wmW3qWNFyWbTk-2jRABoj8xwHevqFLnwf2mE5i7nIpcpQy0FNdqoKPsZAc7sKw7VhYwXYbd9227f97Hv4cPIR25cNuU_-v-ABpDvwWC9p802cvbi5-4upRvkGWY2Lxw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Fang, Xinying</creator><creator>Zhou, Shouhao</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9121-5717</orcidid></search><sort><creationdate>202401</creationdate><title>A comparative study of in vitro dose–response estimation under extreme observations</title><author>Fang, Xinying ; Zhou, Shouhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4082-2de48085cd6d8d793d8cb1560da8e813066b04d592e27d873a8515d3506c2853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>beta regression</topic><topic>Comparative studies</topic><topic>Computer Simulation</topic><topic>Drug development</topic><topic>Drug dosages</topic><topic>Least squares method</topic><topic>median effect equation</topic><topic>Medical research</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>nonlinear regression</topic><topic>penalized regression</topic><topic>Regression Analysis</topic><topic>robust dose–response estimation</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Xinying</creatorcontrib><creatorcontrib>Zhou, Shouhao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Xinying</au><au>Zhou, Shouhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative study of in vitro dose–response estimation under extreme observations</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2024-01</date><risdate>2024</risdate><volume>66</volume><issue>1</issue><spage>e2200092</spage><epage>n/a</epage><pages>e2200092-n/a</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Quantifying drug potency, which requires an accurate estimation of dose–response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median–effect equation to describe the dose–response curve is vulnerable to extreme observations in common experimental data. To facilitate appropriate statistical inference, many powerful estimation tools have been developed in R, including various dose–response packages based on the nonlinear least squares method with different optimization strategies. Recently, beta regression‐based methods have also been introduced in estimation of the median–effect equation. In theory, they can overcome nonnormality, heteroscedasticity, and asymmetry and accommodate flexible robust frameworks and coefficients penalization. To identify a reliable estimation method(s) to estimate dose–response curves even with extreme observations, we conducted a comparative study to review 14 different tools in R and examine their robustness and efficiency via Monte Carlo simulation under a list of comprehensive scenarios. The simulation results demonstrate that penalized beta regression using the mgcv package outperforms other methods in terms of stable, accurate estimation, and reliable uncertainty quantification.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>37068189</pmid><doi>10.1002/bimj.202200092</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9121-5717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2024-01, Vol.66 (1), p.e2200092-n/a
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_2802883992
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects beta regression
Comparative studies
Computer Simulation
Drug development
Drug dosages
Least squares method
median effect equation
Medical research
Monte Carlo Method
Monte Carlo simulation
nonlinear regression
penalized regression
Regression Analysis
robust dose–response estimation
Statistical analysis
Statistical inference
Statistical methods
Uncertainty
title A comparative study of in vitro dose–response estimation under extreme observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20study%20of%20in%20vitro%20dose%E2%80%93response%20estimation%20under%20extreme%20observations&rft.jtitle=Biometrical%20journal&rft.au=Fang,%20Xinying&rft.date=2024-01&rft.volume=66&rft.issue=1&rft.spage=e2200092&rft.epage=n/a&rft.pages=e2200092-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202200092&rft_dat=%3Cproquest_cross%3E2802883992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919357263&rft_id=info:pmid/37068189&rfr_iscdi=true