A comparative study of in vitro dose–response estimation under extreme observations
Quantifying drug potency, which requires an accurate estimation of dose–response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median–effect equation to describe the dose–response curve is vulnerable to ext...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2024-01, Vol.66 (1), p.e2200092-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e2200092 |
container_title | Biometrical journal |
container_volume | 66 |
creator | Fang, Xinying Zhou, Shouhao |
description | Quantifying drug potency, which requires an accurate estimation of dose–response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median–effect equation to describe the dose–response curve is vulnerable to extreme observations in common experimental data. To facilitate appropriate statistical inference, many powerful estimation tools have been developed in R, including various dose–response packages based on the nonlinear least squares method with different optimization strategies. Recently, beta regression‐based methods have also been introduced in estimation of the median–effect equation. In theory, they can overcome nonnormality, heteroscedasticity, and asymmetry and accommodate flexible robust frameworks and coefficients penalization. To identify a reliable estimation method(s) to estimate dose–response curves even with extreme observations, we conducted a comparative study to review 14 different tools in R and examine their robustness and efficiency via Monte Carlo simulation under a list of comprehensive scenarios. The simulation results demonstrate that penalized beta regression using the mgcv package outperforms other methods in terms of stable, accurate estimation, and reliable uncertainty quantification. |
doi_str_mv | 10.1002/bimj.202200092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2802883992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802883992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4082-2de48085cd6d8d793d8cb1560da8e813066b04d592e27d873a8515d3506c2853</originalsourceid><addsrcrecordid>eNqF0MFO4zAQBmBrxQpKlytHZIkLl3TH49hxjlABywrEpXu2kngqpWriYieF3ngH3pAnIaUsBy6c5uDPv2Z-xo4FTAQA_i7rZjFBQASAHH-wkVAokhSk3mMjkCgTadLsgB3GuNgSSHGfHcgMtBEmH7F_57zyzaoIRVeviceudxvu57xu-brugufOR3p9fgkUV76NxCl2dTNg3_K-dRQ4PXWBGuK-jBTW7y_xF_s5L5aRjj7mmM2uLmfTP8nt_fXN9Pw2qVIwmKCj1IBRldPOuCyXzlSlUBpcYcgICVqXkDqVI2HmTCYLo4RyUoGu0Cg5Zme72FXwD_2wmW3qWNFyWbTk-2jRABoj8xwHevqFLnwf2mE5i7nIpcpQy0FNdqoKPsZAc7sKw7VhYwXYbd9227f97Hv4cPIR25cNuU_-v-ABpDvwWC9p802cvbi5-4upRvkGWY2Lxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919357263</pqid></control><display><type>article</type><title>A comparative study of in vitro dose–response estimation under extreme observations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fang, Xinying ; Zhou, Shouhao</creator><creatorcontrib>Fang, Xinying ; Zhou, Shouhao</creatorcontrib><description>Quantifying drug potency, which requires an accurate estimation of dose–response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median–effect equation to describe the dose–response curve is vulnerable to extreme observations in common experimental data. To facilitate appropriate statistical inference, many powerful estimation tools have been developed in R, including various dose–response packages based on the nonlinear least squares method with different optimization strategies. Recently, beta regression‐based methods have also been introduced in estimation of the median–effect equation. In theory, they can overcome nonnormality, heteroscedasticity, and asymmetry and accommodate flexible robust frameworks and coefficients penalization. To identify a reliable estimation method(s) to estimate dose–response curves even with extreme observations, we conducted a comparative study to review 14 different tools in R and examine their robustness and efficiency via Monte Carlo simulation under a list of comprehensive scenarios. The simulation results demonstrate that penalized beta regression using the mgcv package outperforms other methods in terms of stable, accurate estimation, and reliable uncertainty quantification.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202200092</identifier><identifier>PMID: 37068189</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH & Co. KGaA</publisher><subject>beta regression ; Comparative studies ; Computer Simulation ; Drug development ; Drug dosages ; Least squares method ; median effect equation ; Medical research ; Monte Carlo Method ; Monte Carlo simulation ; nonlinear regression ; penalized regression ; Regression Analysis ; robust dose–response estimation ; Statistical analysis ; Statistical inference ; Statistical methods ; Uncertainty</subject><ispartof>Biometrical journal, 2024-01, Vol.66 (1), p.e2200092-n/a</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2023 The Authors. Biometrical Journal published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4082-2de48085cd6d8d793d8cb1560da8e813066b04d592e27d873a8515d3506c2853</citedby><cites>FETCH-LOGICAL-c4082-2de48085cd6d8d793d8cb1560da8e813066b04d592e27d873a8515d3506c2853</cites><orcidid>0000-0001-9121-5717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202200092$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202200092$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37068189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Xinying</creatorcontrib><creatorcontrib>Zhou, Shouhao</creatorcontrib><title>A comparative study of in vitro dose–response estimation under extreme observations</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Quantifying drug potency, which requires an accurate estimation of dose–response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median–effect equation to describe the dose–response curve is vulnerable to extreme observations in common experimental data. To facilitate appropriate statistical inference, many powerful estimation tools have been developed in R, including various dose–response packages based on the nonlinear least squares method with different optimization strategies. Recently, beta regression‐based methods have also been introduced in estimation of the median–effect equation. In theory, they can overcome nonnormality, heteroscedasticity, and asymmetry and accommodate flexible robust frameworks and coefficients penalization. To identify a reliable estimation method(s) to estimate dose–response curves even with extreme observations, we conducted a comparative study to review 14 different tools in R and examine their robustness and efficiency via Monte Carlo simulation under a list of comprehensive scenarios. The simulation results demonstrate that penalized beta regression using the mgcv package outperforms other methods in terms of stable, accurate estimation, and reliable uncertainty quantification.</description><subject>beta regression</subject><subject>Comparative studies</subject><subject>Computer Simulation</subject><subject>Drug development</subject><subject>Drug dosages</subject><subject>Least squares method</subject><subject>median effect equation</subject><subject>Medical research</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>nonlinear regression</subject><subject>penalized regression</subject><subject>Regression Analysis</subject><subject>robust dose–response estimation</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Uncertainty</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqF0MFO4zAQBmBrxQpKlytHZIkLl3TH49hxjlABywrEpXu2kngqpWriYieF3ngH3pAnIaUsBy6c5uDPv2Z-xo4FTAQA_i7rZjFBQASAHH-wkVAokhSk3mMjkCgTadLsgB3GuNgSSHGfHcgMtBEmH7F_57zyzaoIRVeviceudxvu57xu-brugufOR3p9fgkUV76NxCl2dTNg3_K-dRQ4PXWBGuK-jBTW7y_xF_s5L5aRjj7mmM2uLmfTP8nt_fXN9Pw2qVIwmKCj1IBRldPOuCyXzlSlUBpcYcgICVqXkDqVI2HmTCYLo4RyUoGu0Cg5Zme72FXwD_2wmW3qWNFyWbTk-2jRABoj8xwHevqFLnwf2mE5i7nIpcpQy0FNdqoKPsZAc7sKw7VhYwXYbd9227f97Hv4cPIR25cNuU_-v-ABpDvwWC9p802cvbi5-4upRvkGWY2Lxw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Fang, Xinying</creator><creator>Zhou, Shouhao</creator><general>Wiley - VCH Verlag GmbH & Co. KGaA</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9121-5717</orcidid></search><sort><creationdate>202401</creationdate><title>A comparative study of in vitro dose–response estimation under extreme observations</title><author>Fang, Xinying ; Zhou, Shouhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4082-2de48085cd6d8d793d8cb1560da8e813066b04d592e27d873a8515d3506c2853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>beta regression</topic><topic>Comparative studies</topic><topic>Computer Simulation</topic><topic>Drug development</topic><topic>Drug dosages</topic><topic>Least squares method</topic><topic>median effect equation</topic><topic>Medical research</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>nonlinear regression</topic><topic>penalized regression</topic><topic>Regression Analysis</topic><topic>robust dose–response estimation</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Xinying</creatorcontrib><creatorcontrib>Zhou, Shouhao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Xinying</au><au>Zhou, Shouhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative study of in vitro dose–response estimation under extreme observations</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2024-01</date><risdate>2024</risdate><volume>66</volume><issue>1</issue><spage>e2200092</spage><epage>n/a</epage><pages>e2200092-n/a</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Quantifying drug potency, which requires an accurate estimation of dose–response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median–effect equation to describe the dose–response curve is vulnerable to extreme observations in common experimental data. To facilitate appropriate statistical inference, many powerful estimation tools have been developed in R, including various dose–response packages based on the nonlinear least squares method with different optimization strategies. Recently, beta regression‐based methods have also been introduced in estimation of the median–effect equation. In theory, they can overcome nonnormality, heteroscedasticity, and asymmetry and accommodate flexible robust frameworks and coefficients penalization. To identify a reliable estimation method(s) to estimate dose–response curves even with extreme observations, we conducted a comparative study to review 14 different tools in R and examine their robustness and efficiency via Monte Carlo simulation under a list of comprehensive scenarios. The simulation results demonstrate that penalized beta regression using the mgcv package outperforms other methods in terms of stable, accurate estimation, and reliable uncertainty quantification.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH & Co. KGaA</pub><pmid>37068189</pmid><doi>10.1002/bimj.202200092</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9121-5717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2024-01, Vol.66 (1), p.e2200092-n/a |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_proquest_miscellaneous_2802883992 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | beta regression Comparative studies Computer Simulation Drug development Drug dosages Least squares method median effect equation Medical research Monte Carlo Method Monte Carlo simulation nonlinear regression penalized regression Regression Analysis robust dose–response estimation Statistical analysis Statistical inference Statistical methods Uncertainty |
title | A comparative study of in vitro dose–response estimation under extreme observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20study%20of%20in%20vitro%20dose%E2%80%93response%20estimation%20under%20extreme%20observations&rft.jtitle=Biometrical%20journal&rft.au=Fang,%20Xinying&rft.date=2024-01&rft.volume=66&rft.issue=1&rft.spage=e2200092&rft.epage=n/a&rft.pages=e2200092-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202200092&rft_dat=%3Cproquest_cross%3E2802883992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919357263&rft_id=info:pmid/37068189&rfr_iscdi=true |