Urinary Metabolomics Identified Metabolic Perturbations Associated with Gutka, a Smokeless Form of Tobacco

Gutka, a form of smokeless tobacco, is widely used in the Indian subcontinent and in other regions of South Asia. Smokeless tobacco exposure is most likely to increase the incidence of oral cancer in the Indian population, and metabolic changes are a hallmark of cancer. The development of biomarkers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in toxicology 2023-04, Vol.36 (4), p.669-684
Hauptverfasser: Jorvekar, Sachin B., Jala, Aishwarya, Rai, Avdhesh, Jangili, Shraddha, Adla, Deepthi, Borkar, Gautam, Das, Anupam, Kakati, Kaberi, Das, Kishore, Sarma, Anupam, Mutheneni, Srinivasa Rao, Borkar, Roshan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 4
container_start_page 669
container_title Chemical research in toxicology
container_volume 36
creator Jorvekar, Sachin B.
Jala, Aishwarya
Rai, Avdhesh
Jangili, Shraddha
Adla, Deepthi
Borkar, Gautam
Das, Anupam
Kakati, Kaberi
Das, Kishore
Sarma, Anupam
Mutheneni, Srinivasa Rao
Borkar, Roshan M.
description Gutka, a form of smokeless tobacco, is widely used in the Indian subcontinent and in other regions of South Asia. Smokeless tobacco exposure is most likely to increase the incidence of oral cancer in the Indian population, and metabolic changes are a hallmark of cancer. The development of biomarkers for early detection and better prevention measures for smokeless tobacco users at risk of oral cancer can be aided by studying urinary metabolomics and offering insight into altered metabolic profiles. This study aimed to investigate urine metabolic alterations among smokeless tobacco users using targeted LC-ESI-MS/MS metabolomics approaches to better understand the effects of smokeless tobacco on human metabolism. Smokeless tobacco users’ specific urinary metabolomics signatures were extracted using univariate, multivariate analysis and machine learning methods. Statistical analysis identified 30 urine metabolites significantly associated with metabolomic alterations in humans who chew smokeless tobacco. Receiver operator characteristic (ROC) curve analysis evidenced the 5 most discriminatory metabolites from each approach that could differentiate between smokeless tobacco users and controls with higher sensitivity and specificity. An analysis of multiple-metabolite machine learning models and single-metabolite ROC curves revealed discriminatory metabolites capable of distinguishing smokeless tobacco users from nonusers more effectively with higher sensitivity and specificity. Furthermore, metabolic pathway analysis depicted several dysregulated pathways in smokeless tobacco users, including arginine biosynthesis, beta-alanine metabolism, TCA cycle, etc. This study devised a novel strategy to identify exposure biomarkers among smokeless tobacco users by combining metabolomics and machine learning algorithms.
doi_str_mv 10.1021/acs.chemrestox.2c00401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2802423334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802423334</sourcerecordid><originalsourceid>FETCH-LOGICAL-a354t-480b3933c4fd71a5d77b328b416db149700407ae13c57343aaaff66d6cf44d053</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWqt_oWTpwqn5mq9lEVsLFQVbcBcySYamzkxqkkH996a01aWrB4977uMdAEYYjTEi-E5IP5Zr3Trtg_0aE4kQQ_gEDHBKUJIijE7BABUlTQgp3i7ApfcbhHBk83NwQbMyz0hWDsBm5Uwn3Dd80kFUtrGtkR7Ole6CqY1Wx72R8EW70LtKBGM7DyfeW2lEiJFPE9Zw1od3cQsFfG3tu26093BqXQttDZe2ElLaK3BWi8br68McgtX0YXn_mCyeZ_P7ySIRNGUhYQWqaEmpZLXKsUhVnleUFBXDmaowK_Pdp7nQmMo0p4wKIeo6y1Qma8YUSukQ3Ox7t85-9NEPb42XumlEp23vOSkQYYTSyA5Bto9KZ713uuZbZ9qog2PEd5559Mz_PPOD5wiODjf6qtXqFzuKjQGyD-wKNrZ3XXz5v9YfjoaPzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802423334</pqid></control><display><type>article</type><title>Urinary Metabolomics Identified Metabolic Perturbations Associated with Gutka, a Smokeless Form of Tobacco</title><source>ACS Publications</source><source>MEDLINE</source><creator>Jorvekar, Sachin B. ; Jala, Aishwarya ; Rai, Avdhesh ; Jangili, Shraddha ; Adla, Deepthi ; Borkar, Gautam ; Das, Anupam ; Kakati, Kaberi ; Das, Kishore ; Sarma, Anupam ; Mutheneni, Srinivasa Rao ; Borkar, Roshan M.</creator><creatorcontrib>Jorvekar, Sachin B. ; Jala, Aishwarya ; Rai, Avdhesh ; Jangili, Shraddha ; Adla, Deepthi ; Borkar, Gautam ; Das, Anupam ; Kakati, Kaberi ; Das, Kishore ; Sarma, Anupam ; Mutheneni, Srinivasa Rao ; Borkar, Roshan M.</creatorcontrib><description>Gutka, a form of smokeless tobacco, is widely used in the Indian subcontinent and in other regions of South Asia. Smokeless tobacco exposure is most likely to increase the incidence of oral cancer in the Indian population, and metabolic changes are a hallmark of cancer. The development of biomarkers for early detection and better prevention measures for smokeless tobacco users at risk of oral cancer can be aided by studying urinary metabolomics and offering insight into altered metabolic profiles. This study aimed to investigate urine metabolic alterations among smokeless tobacco users using targeted LC-ESI-MS/MS metabolomics approaches to better understand the effects of smokeless tobacco on human metabolism. Smokeless tobacco users’ specific urinary metabolomics signatures were extracted using univariate, multivariate analysis and machine learning methods. Statistical analysis identified 30 urine metabolites significantly associated with metabolomic alterations in humans who chew smokeless tobacco. Receiver operator characteristic (ROC) curve analysis evidenced the 5 most discriminatory metabolites from each approach that could differentiate between smokeless tobacco users and controls with higher sensitivity and specificity. An analysis of multiple-metabolite machine learning models and single-metabolite ROC curves revealed discriminatory metabolites capable of distinguishing smokeless tobacco users from nonusers more effectively with higher sensitivity and specificity. Furthermore, metabolic pathway analysis depicted several dysregulated pathways in smokeless tobacco users, including arginine biosynthesis, beta-alanine metabolism, TCA cycle, etc. This study devised a novel strategy to identify exposure biomarkers among smokeless tobacco users by combining metabolomics and machine learning algorithms.</description><identifier>ISSN: 0893-228X</identifier><identifier>EISSN: 1520-5010</identifier><identifier>DOI: 10.1021/acs.chemrestox.2c00401</identifier><identifier>PMID: 36976269</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomarkers - urine ; Humans ; Metabolomics ; Mouth Neoplasms ; Nicotiana ; Tandem Mass Spectrometry ; Tobacco, Smokeless - adverse effects</subject><ispartof>Chemical research in toxicology, 2023-04, Vol.36 (4), p.669-684</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a354t-480b3933c4fd71a5d77b328b416db149700407ae13c57343aaaff66d6cf44d053</citedby><cites>FETCH-LOGICAL-a354t-480b3933c4fd71a5d77b328b416db149700407ae13c57343aaaff66d6cf44d053</cites><orcidid>0000-0001-9663-2907 ; 0000-0003-1963-7688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrestox.2c00401$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00401$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36976269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jorvekar, Sachin B.</creatorcontrib><creatorcontrib>Jala, Aishwarya</creatorcontrib><creatorcontrib>Rai, Avdhesh</creatorcontrib><creatorcontrib>Jangili, Shraddha</creatorcontrib><creatorcontrib>Adla, Deepthi</creatorcontrib><creatorcontrib>Borkar, Gautam</creatorcontrib><creatorcontrib>Das, Anupam</creatorcontrib><creatorcontrib>Kakati, Kaberi</creatorcontrib><creatorcontrib>Das, Kishore</creatorcontrib><creatorcontrib>Sarma, Anupam</creatorcontrib><creatorcontrib>Mutheneni, Srinivasa Rao</creatorcontrib><creatorcontrib>Borkar, Roshan M.</creatorcontrib><title>Urinary Metabolomics Identified Metabolic Perturbations Associated with Gutka, a Smokeless Form of Tobacco</title><title>Chemical research in toxicology</title><addtitle>Chem. Res. Toxicol</addtitle><description>Gutka, a form of smokeless tobacco, is widely used in the Indian subcontinent and in other regions of South Asia. Smokeless tobacco exposure is most likely to increase the incidence of oral cancer in the Indian population, and metabolic changes are a hallmark of cancer. The development of biomarkers for early detection and better prevention measures for smokeless tobacco users at risk of oral cancer can be aided by studying urinary metabolomics and offering insight into altered metabolic profiles. This study aimed to investigate urine metabolic alterations among smokeless tobacco users using targeted LC-ESI-MS/MS metabolomics approaches to better understand the effects of smokeless tobacco on human metabolism. Smokeless tobacco users’ specific urinary metabolomics signatures were extracted using univariate, multivariate analysis and machine learning methods. Statistical analysis identified 30 urine metabolites significantly associated with metabolomic alterations in humans who chew smokeless tobacco. Receiver operator characteristic (ROC) curve analysis evidenced the 5 most discriminatory metabolites from each approach that could differentiate between smokeless tobacco users and controls with higher sensitivity and specificity. An analysis of multiple-metabolite machine learning models and single-metabolite ROC curves revealed discriminatory metabolites capable of distinguishing smokeless tobacco users from nonusers more effectively with higher sensitivity and specificity. Furthermore, metabolic pathway analysis depicted several dysregulated pathways in smokeless tobacco users, including arginine biosynthesis, beta-alanine metabolism, TCA cycle, etc. This study devised a novel strategy to identify exposure biomarkers among smokeless tobacco users by combining metabolomics and machine learning algorithms.</description><subject>Biomarkers - urine</subject><subject>Humans</subject><subject>Metabolomics</subject><subject>Mouth Neoplasms</subject><subject>Nicotiana</subject><subject>Tandem Mass Spectrometry</subject><subject>Tobacco, Smokeless - adverse effects</subject><issn>0893-228X</issn><issn>1520-5010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEURYMoWqt_oWTpwqn5mq9lEVsLFQVbcBcySYamzkxqkkH996a01aWrB4977uMdAEYYjTEi-E5IP5Zr3Trtg_0aE4kQQ_gEDHBKUJIijE7BABUlTQgp3i7ApfcbhHBk83NwQbMyz0hWDsBm5Uwn3Dd80kFUtrGtkR7Ole6CqY1Wx72R8EW70LtKBGM7DyfeW2lEiJFPE9Zw1od3cQsFfG3tu26093BqXQttDZe2ElLaK3BWi8br68McgtX0YXn_mCyeZ_P7ySIRNGUhYQWqaEmpZLXKsUhVnleUFBXDmaowK_Pdp7nQmMo0p4wKIeo6y1Qma8YUSukQ3Ox7t85-9NEPb42XumlEp23vOSkQYYTSyA5Bto9KZ713uuZbZ9qog2PEd5559Mz_PPOD5wiODjf6qtXqFzuKjQGyD-wKNrZ3XXz5v9YfjoaPzQ</recordid><startdate>20230417</startdate><enddate>20230417</enddate><creator>Jorvekar, Sachin B.</creator><creator>Jala, Aishwarya</creator><creator>Rai, Avdhesh</creator><creator>Jangili, Shraddha</creator><creator>Adla, Deepthi</creator><creator>Borkar, Gautam</creator><creator>Das, Anupam</creator><creator>Kakati, Kaberi</creator><creator>Das, Kishore</creator><creator>Sarma, Anupam</creator><creator>Mutheneni, Srinivasa Rao</creator><creator>Borkar, Roshan M.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9663-2907</orcidid><orcidid>https://orcid.org/0000-0003-1963-7688</orcidid></search><sort><creationdate>20230417</creationdate><title>Urinary Metabolomics Identified Metabolic Perturbations Associated with Gutka, a Smokeless Form of Tobacco</title><author>Jorvekar, Sachin B. ; Jala, Aishwarya ; Rai, Avdhesh ; Jangili, Shraddha ; Adla, Deepthi ; Borkar, Gautam ; Das, Anupam ; Kakati, Kaberi ; Das, Kishore ; Sarma, Anupam ; Mutheneni, Srinivasa Rao ; Borkar, Roshan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a354t-480b3933c4fd71a5d77b328b416db149700407ae13c57343aaaff66d6cf44d053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers - urine</topic><topic>Humans</topic><topic>Metabolomics</topic><topic>Mouth Neoplasms</topic><topic>Nicotiana</topic><topic>Tandem Mass Spectrometry</topic><topic>Tobacco, Smokeless - adverse effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jorvekar, Sachin B.</creatorcontrib><creatorcontrib>Jala, Aishwarya</creatorcontrib><creatorcontrib>Rai, Avdhesh</creatorcontrib><creatorcontrib>Jangili, Shraddha</creatorcontrib><creatorcontrib>Adla, Deepthi</creatorcontrib><creatorcontrib>Borkar, Gautam</creatorcontrib><creatorcontrib>Das, Anupam</creatorcontrib><creatorcontrib>Kakati, Kaberi</creatorcontrib><creatorcontrib>Das, Kishore</creatorcontrib><creatorcontrib>Sarma, Anupam</creatorcontrib><creatorcontrib>Mutheneni, Srinivasa Rao</creatorcontrib><creatorcontrib>Borkar, Roshan M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical research in toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jorvekar, Sachin B.</au><au>Jala, Aishwarya</au><au>Rai, Avdhesh</au><au>Jangili, Shraddha</au><au>Adla, Deepthi</au><au>Borkar, Gautam</au><au>Das, Anupam</au><au>Kakati, Kaberi</au><au>Das, Kishore</au><au>Sarma, Anupam</au><au>Mutheneni, Srinivasa Rao</au><au>Borkar, Roshan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urinary Metabolomics Identified Metabolic Perturbations Associated with Gutka, a Smokeless Form of Tobacco</atitle><jtitle>Chemical research in toxicology</jtitle><addtitle>Chem. Res. Toxicol</addtitle><date>2023-04-17</date><risdate>2023</risdate><volume>36</volume><issue>4</issue><spage>669</spage><epage>684</epage><pages>669-684</pages><issn>0893-228X</issn><eissn>1520-5010</eissn><abstract>Gutka, a form of smokeless tobacco, is widely used in the Indian subcontinent and in other regions of South Asia. Smokeless tobacco exposure is most likely to increase the incidence of oral cancer in the Indian population, and metabolic changes are a hallmark of cancer. The development of biomarkers for early detection and better prevention measures for smokeless tobacco users at risk of oral cancer can be aided by studying urinary metabolomics and offering insight into altered metabolic profiles. This study aimed to investigate urine metabolic alterations among smokeless tobacco users using targeted LC-ESI-MS/MS metabolomics approaches to better understand the effects of smokeless tobacco on human metabolism. Smokeless tobacco users’ specific urinary metabolomics signatures were extracted using univariate, multivariate analysis and machine learning methods. Statistical analysis identified 30 urine metabolites significantly associated with metabolomic alterations in humans who chew smokeless tobacco. Receiver operator characteristic (ROC) curve analysis evidenced the 5 most discriminatory metabolites from each approach that could differentiate between smokeless tobacco users and controls with higher sensitivity and specificity. An analysis of multiple-metabolite machine learning models and single-metabolite ROC curves revealed discriminatory metabolites capable of distinguishing smokeless tobacco users from nonusers more effectively with higher sensitivity and specificity. Furthermore, metabolic pathway analysis depicted several dysregulated pathways in smokeless tobacco users, including arginine biosynthesis, beta-alanine metabolism, TCA cycle, etc. This study devised a novel strategy to identify exposure biomarkers among smokeless tobacco users by combining metabolomics and machine learning algorithms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36976269</pmid><doi>10.1021/acs.chemrestox.2c00401</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9663-2907</orcidid><orcidid>https://orcid.org/0000-0003-1963-7688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-228X
ispartof Chemical research in toxicology, 2023-04, Vol.36 (4), p.669-684
issn 0893-228X
1520-5010
language eng
recordid cdi_proquest_miscellaneous_2802423334
source ACS Publications; MEDLINE
subjects Biomarkers - urine
Humans
Metabolomics
Mouth Neoplasms
Nicotiana
Tandem Mass Spectrometry
Tobacco, Smokeless - adverse effects
title Urinary Metabolomics Identified Metabolic Perturbations Associated with Gutka, a Smokeless Form of Tobacco
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urinary%20Metabolomics%20Identified%20Metabolic%20Perturbations%20Associated%20with%20Gutka,%20a%20Smokeless%20Form%20of%20Tobacco&rft.jtitle=Chemical%20research%20in%20toxicology&rft.au=Jorvekar,%20Sachin%20B.&rft.date=2023-04-17&rft.volume=36&rft.issue=4&rft.spage=669&rft.epage=684&rft.pages=669-684&rft.issn=0893-228X&rft.eissn=1520-5010&rft_id=info:doi/10.1021/acs.chemrestox.2c00401&rft_dat=%3Cproquest_cross%3E2802423334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802423334&rft_id=info:pmid/36976269&rfr_iscdi=true