Homoepitaxial silicon growth in a non-ultra-high vacuum environment by ion-assisted deposition on Si wafer and seeded glass substrates

Eliminating the requirement of ultra-high vacuum (UHV) conditions and achieving high-rate crystalline silicon (c-Si) growth are important targets for cheap mass production of semiconductor devices such as thin-film solar cells. In this paper we report on the achievement of high-quality, high-rate, e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2006-07, Vol.511 (Complete), p.41-45
Hauptverfasser: Straub, Axel, Inns, Daniel, Terry, Mason L., Huang, Yidan, Widenborg, Per I., Aberle, Armin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue Complete
container_start_page 41
container_title Thin solid films
container_volume 511
creator Straub, Axel
Inns, Daniel
Terry, Mason L.
Huang, Yidan
Widenborg, Per I.
Aberle, Armin G.
description Eliminating the requirement of ultra-high vacuum (UHV) conditions and achieving high-rate crystalline silicon (c-Si) growth are important targets for cheap mass production of semiconductor devices such as thin-film solar cells. In this paper we report on the achievement of high-quality, high-rate, epitaxial Si growth in a non-UHV environment by ion-assisted deposition (IAD) on (100) Si wafer substrates as well as on glass substrates featuring a polycrystalline Si seed layer. This was achieved by high-rate growth to suppress the contamination in the growing Si film and by a sacrificial protective layer which protects the initial growth surface prior to start of epitaxy. On (100) Si wafer substrates good structural quality of the epitaxially grown Si films was achieved, resulting in 1-Sun open-circuit voltages of up to 550 mV. On planar seeded glass substrates the heating procedure had to be modified to take the large thermal mass and the thermal stress caused by the underlying glass substrate into account. It is shown that the pre-heating phase must be extended by more than a factor of 4 and that high growth temperatures have to be avoided to minimise thermal stress. Taking these considerations into account and using two post-deposition treatments (rapid thermal annealing and hydrogenation), open-circuit voltages of 420 mV and short circuit-current densities of about 10 mA/cm 2 under 1-Sun illumination are achieved on glass substrates.
doi_str_mv 10.1016/j.tsf.2005.12.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28022316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004060900502331X</els_id><sourcerecordid>28022316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-d89bbacd958d64c6eaa5d386267d1945e5fce8bf97d6118f8f7932e8fdde27563</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpods0P6A3nXqzI8lrW6anEpoPCOSQ5CxkabSrxZa2GnmT_IH87mjZnAMDA8PzvjAPIb84qznj3cWuzuhqwVhbc1Eztv5CVlz2QyX6hn8lq3JhVccG9p38QNwxxrgQzYq83cQ5wt5n_eL1RNFP3sRANyk-5y31gWoaYqiWKSddbf1mSw_aLMtMIRx8imGGkOn4Sn2BNKLHDJZa2Ef0udxomQdPn7WDRHWwFAFsITZTgSkuI5beDPiTfHN6Qjj_2Gfk6erf4-VNdXd_fXv5964yjZC5snIYR23s0ErbrU0HWre2kZ3oesuHdQutMyBHN_S241w66fqhESCdtSD6tmvOyO9T7z7F_wtgVrNHA9OkA8QFlZCsaOFHkJ9AkyJiAqf2yc86vSrO1NG42qliXB2NKy5U8Vsyf04ZKB8cPCSFxkMwYH0Ck5WN_pP0O-KTjQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28022316</pqid></control><display><type>article</type><title>Homoepitaxial silicon growth in a non-ultra-high vacuum environment by ion-assisted deposition on Si wafer and seeded glass substrates</title><source>Elsevier ScienceDirect Journals</source><creator>Straub, Axel ; Inns, Daniel ; Terry, Mason L. ; Huang, Yidan ; Widenborg, Per I. ; Aberle, Armin G.</creator><creatorcontrib>Straub, Axel ; Inns, Daniel ; Terry, Mason L. ; Huang, Yidan ; Widenborg, Per I. ; Aberle, Armin G.</creatorcontrib><description>Eliminating the requirement of ultra-high vacuum (UHV) conditions and achieving high-rate crystalline silicon (c-Si) growth are important targets for cheap mass production of semiconductor devices such as thin-film solar cells. In this paper we report on the achievement of high-quality, high-rate, epitaxial Si growth in a non-UHV environment by ion-assisted deposition (IAD) on (100) Si wafer substrates as well as on glass substrates featuring a polycrystalline Si seed layer. This was achieved by high-rate growth to suppress the contamination in the growing Si film and by a sacrificial protective layer which protects the initial growth surface prior to start of epitaxy. On (100) Si wafer substrates good structural quality of the epitaxially grown Si films was achieved, resulting in 1-Sun open-circuit voltages of up to 550 mV. On planar seeded glass substrates the heating procedure had to be modified to take the large thermal mass and the thermal stress caused by the underlying glass substrate into account. It is shown that the pre-heating phase must be extended by more than a factor of 4 and that high growth temperatures have to be avoided to minimise thermal stress. Taking these considerations into account and using two post-deposition treatments (rapid thermal annealing and hydrogenation), open-circuit voltages of 420 mV and short circuit-current densities of about 10 mA/cm 2 under 1-Sun illumination are achieved on glass substrates.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2005.12.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Epitaxy ; Silicon ; Solar cells ; Structural properties</subject><ispartof>Thin solid films, 2006-07, Vol.511 (Complete), p.41-45</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-d89bbacd958d64c6eaa5d386267d1945e5fce8bf97d6118f8f7932e8fdde27563</citedby><cites>FETCH-LOGICAL-c328t-d89bbacd958d64c6eaa5d386267d1945e5fce8bf97d6118f8f7932e8fdde27563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2005.12.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Straub, Axel</creatorcontrib><creatorcontrib>Inns, Daniel</creatorcontrib><creatorcontrib>Terry, Mason L.</creatorcontrib><creatorcontrib>Huang, Yidan</creatorcontrib><creatorcontrib>Widenborg, Per I.</creatorcontrib><creatorcontrib>Aberle, Armin G.</creatorcontrib><title>Homoepitaxial silicon growth in a non-ultra-high vacuum environment by ion-assisted deposition on Si wafer and seeded glass substrates</title><title>Thin solid films</title><description>Eliminating the requirement of ultra-high vacuum (UHV) conditions and achieving high-rate crystalline silicon (c-Si) growth are important targets for cheap mass production of semiconductor devices such as thin-film solar cells. In this paper we report on the achievement of high-quality, high-rate, epitaxial Si growth in a non-UHV environment by ion-assisted deposition (IAD) on (100) Si wafer substrates as well as on glass substrates featuring a polycrystalline Si seed layer. This was achieved by high-rate growth to suppress the contamination in the growing Si film and by a sacrificial protective layer which protects the initial growth surface prior to start of epitaxy. On (100) Si wafer substrates good structural quality of the epitaxially grown Si films was achieved, resulting in 1-Sun open-circuit voltages of up to 550 mV. On planar seeded glass substrates the heating procedure had to be modified to take the large thermal mass and the thermal stress caused by the underlying glass substrate into account. It is shown that the pre-heating phase must be extended by more than a factor of 4 and that high growth temperatures have to be avoided to minimise thermal stress. Taking these considerations into account and using two post-deposition treatments (rapid thermal annealing and hydrogenation), open-circuit voltages of 420 mV and short circuit-current densities of about 10 mA/cm 2 under 1-Sun illumination are achieved on glass substrates.</description><subject>Epitaxy</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Structural properties</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpods0P6A3nXqzI8lrW6anEpoPCOSQ5CxkabSrxZa2GnmT_IH87mjZnAMDA8PzvjAPIb84qznj3cWuzuhqwVhbc1Eztv5CVlz2QyX6hn8lq3JhVccG9p38QNwxxrgQzYq83cQ5wt5n_eL1RNFP3sRANyk-5y31gWoaYqiWKSddbf1mSw_aLMtMIRx8imGGkOn4Sn2BNKLHDJZa2Ef0udxomQdPn7WDRHWwFAFsITZTgSkuI5beDPiTfHN6Qjj_2Gfk6erf4-VNdXd_fXv5964yjZC5snIYR23s0ErbrU0HWre2kZ3oesuHdQutMyBHN_S241w66fqhESCdtSD6tmvOyO9T7z7F_wtgVrNHA9OkA8QFlZCsaOFHkJ9AkyJiAqf2yc86vSrO1NG42qliXB2NKy5U8Vsyf04ZKB8cPCSFxkMwYH0Ck5WN_pP0O-KTjQs</recordid><startdate>20060726</startdate><enddate>20060726</enddate><creator>Straub, Axel</creator><creator>Inns, Daniel</creator><creator>Terry, Mason L.</creator><creator>Huang, Yidan</creator><creator>Widenborg, Per I.</creator><creator>Aberle, Armin G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060726</creationdate><title>Homoepitaxial silicon growth in a non-ultra-high vacuum environment by ion-assisted deposition on Si wafer and seeded glass substrates</title><author>Straub, Axel ; Inns, Daniel ; Terry, Mason L. ; Huang, Yidan ; Widenborg, Per I. ; Aberle, Armin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-d89bbacd958d64c6eaa5d386267d1945e5fce8bf97d6118f8f7932e8fdde27563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Epitaxy</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Structural properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Straub, Axel</creatorcontrib><creatorcontrib>Inns, Daniel</creatorcontrib><creatorcontrib>Terry, Mason L.</creatorcontrib><creatorcontrib>Huang, Yidan</creatorcontrib><creatorcontrib>Widenborg, Per I.</creatorcontrib><creatorcontrib>Aberle, Armin G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Straub, Axel</au><au>Inns, Daniel</au><au>Terry, Mason L.</au><au>Huang, Yidan</au><au>Widenborg, Per I.</au><au>Aberle, Armin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homoepitaxial silicon growth in a non-ultra-high vacuum environment by ion-assisted deposition on Si wafer and seeded glass substrates</atitle><jtitle>Thin solid films</jtitle><date>2006-07-26</date><risdate>2006</risdate><volume>511</volume><issue>Complete</issue><spage>41</spage><epage>45</epage><pages>41-45</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><abstract>Eliminating the requirement of ultra-high vacuum (UHV) conditions and achieving high-rate crystalline silicon (c-Si) growth are important targets for cheap mass production of semiconductor devices such as thin-film solar cells. In this paper we report on the achievement of high-quality, high-rate, epitaxial Si growth in a non-UHV environment by ion-assisted deposition (IAD) on (100) Si wafer substrates as well as on glass substrates featuring a polycrystalline Si seed layer. This was achieved by high-rate growth to suppress the contamination in the growing Si film and by a sacrificial protective layer which protects the initial growth surface prior to start of epitaxy. On (100) Si wafer substrates good structural quality of the epitaxially grown Si films was achieved, resulting in 1-Sun open-circuit voltages of up to 550 mV. On planar seeded glass substrates the heating procedure had to be modified to take the large thermal mass and the thermal stress caused by the underlying glass substrate into account. It is shown that the pre-heating phase must be extended by more than a factor of 4 and that high growth temperatures have to be avoided to minimise thermal stress. Taking these considerations into account and using two post-deposition treatments (rapid thermal annealing and hydrogenation), open-circuit voltages of 420 mV and short circuit-current densities of about 10 mA/cm 2 under 1-Sun illumination are achieved on glass substrates.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2005.12.004</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2006-07, Vol.511 (Complete), p.41-45
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_28022316
source Elsevier ScienceDirect Journals
subjects Epitaxy
Silicon
Solar cells
Structural properties
title Homoepitaxial silicon growth in a non-ultra-high vacuum environment by ion-assisted deposition on Si wafer and seeded glass substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homoepitaxial%20silicon%20growth%20in%20a%20non-ultra-high%20vacuum%20environment%20by%20ion-assisted%20deposition%20on%20Si%20wafer%20and%20seeded%20glass%20substrates&rft.jtitle=Thin%20solid%20films&rft.au=Straub,%20Axel&rft.date=2006-07-26&rft.volume=511&rft.issue=Complete&rft.spage=41&rft.epage=45&rft.pages=41-45&rft.issn=0040-6090&rft.eissn=1879-2731&rft_id=info:doi/10.1016/j.tsf.2005.12.004&rft_dat=%3Cproquest_cross%3E28022316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28022316&rft_id=info:pmid/&rft_els_id=S004060900502331X&rfr_iscdi=true