Fuzzy rule interpolation for multidimensional input spaces with applications: a case study

Fuzzy rule based systems have been very popular in many engineering applications. However, when generating fuzzy rules from the available information, this may result in a sparse fuzzy rule base. Fuzzy rule interpolation techniques have been established to solve the problems encountered in processin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2005-12, Vol.13 (6), p.809-819
Hauptverfasser: Kok Wai Wong, Tikk, D., Gedeon, T.D., Koczy, L.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 819
container_issue 6
container_start_page 809
container_title IEEE transactions on fuzzy systems
container_volume 13
creator Kok Wai Wong
Tikk, D.
Gedeon, T.D.
Koczy, L.T.
description Fuzzy rule based systems have been very popular in many engineering applications. However, when generating fuzzy rules from the available information, this may result in a sparse fuzzy rule base. Fuzzy rule interpolation techniques have been established to solve the problems encountered in processing sparse fuzzy rule bases. In most engineering applications, the use of more than one input variable is common, however, the majority of the fuzzy rule interpolation techniques only present detailed analysis to one input variable case. This paper investigates characteristics of two selected fuzzy rule interpolation techniques for multidimensional input spaces and proposes an improved fuzzy rule interpolation technique to handle multidimensional input spaces. The three methods are compared by means of application examples in the field of petroleum engineering and mineral processing. The results show that the proposed fuzzy rule interpolation technique for multidimensional input spaces can be used in engineering applications.
doi_str_mv 10.1109/TFUZZ.2005.859316
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28020291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556586</ieee_id><sourcerecordid>2581138321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-2b8ef02a611c63e81a33f0b8077c8734f132e59404eb79bf17650e30120b34923</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsHrylzuwmm6w3KVaFgpf20suySSe4JV_uJkj7600bQfA0L8PzDswTBLcIM0RQj6vFerOZcYB4lsZKoDwLJqgiDAFEdD5kkCKUCcjL4Mr7HQBGMaaTYLPoD4c9c31JzNYdubYpTWebmhWNY1VfdnZrK6r9sDLlgLR9x3xrcvLs23afzLRtafNTxT8xw3Ljifmu3-6vg4vClJ5ufuc0WC9eVvO3cPnx-j5_Xoa54KILeZZSAdxIxFwKStEIUUCWQpLkaSKiAgWnWEUQUZaorMBExkACkEMmIsXFNHgY77au-erJd7qyPqeyNDU1vdc8BQ5c4QDe_wN3Te-Gt7xWRyLiiRogHKHcNd47KnTrbGXcXiPoo2p9Uq2PqvWoeujcjR1LRH98HMs4leIHwFZ6pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920294279</pqid></control><display><type>article</type><title>Fuzzy rule interpolation for multidimensional input spaces with applications: a case study</title><source>IEEE Electronic Library (IEL)</source><creator>Kok Wai Wong ; Tikk, D. ; Gedeon, T.D. ; Koczy, L.T.</creator><creatorcontrib>Kok Wai Wong ; Tikk, D. ; Gedeon, T.D. ; Koczy, L.T.</creatorcontrib><description>Fuzzy rule based systems have been very popular in many engineering applications. However, when generating fuzzy rules from the available information, this may result in a sparse fuzzy rule base. Fuzzy rule interpolation techniques have been established to solve the problems encountered in processing sparse fuzzy rule bases. In most engineering applications, the use of more than one input variable is common, however, the majority of the fuzzy rule interpolation techniques only present detailed analysis to one input variable case. This paper investigates characteristics of two selected fuzzy rule interpolation techniques for multidimensional input spaces and proposes an improved fuzzy rule interpolation technique to handle multidimensional input spaces. The three methods are compared by means of application examples in the field of petroleum engineering and mineral processing. The results show that the proposed fuzzy rule interpolation technique for multidimensional input spaces can be used in engineering applications.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2005.859316</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer aided software engineering ; Fuzzy control ; Fuzzy reasoning ; Fuzzy rule interpolation ; Fuzzy sets ; Fuzzy systems ; Information technology ; Input variables ; Interpolation ; multidimensional input spaces ; Multidimensional systems ; sparse fuzzy rules ; Systems engineering and theory</subject><ispartof>IEEE transactions on fuzzy systems, 2005-12, Vol.13 (6), p.809-819</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-2b8ef02a611c63e81a33f0b8077c8734f132e59404eb79bf17650e30120b34923</citedby><cites>FETCH-LOGICAL-c323t-2b8ef02a611c63e81a33f0b8077c8734f132e59404eb79bf17650e30120b34923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556586$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556586$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kok Wai Wong</creatorcontrib><creatorcontrib>Tikk, D.</creatorcontrib><creatorcontrib>Gedeon, T.D.</creatorcontrib><creatorcontrib>Koczy, L.T.</creatorcontrib><title>Fuzzy rule interpolation for multidimensional input spaces with applications: a case study</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Fuzzy rule based systems have been very popular in many engineering applications. However, when generating fuzzy rules from the available information, this may result in a sparse fuzzy rule base. Fuzzy rule interpolation techniques have been established to solve the problems encountered in processing sparse fuzzy rule bases. In most engineering applications, the use of more than one input variable is common, however, the majority of the fuzzy rule interpolation techniques only present detailed analysis to one input variable case. This paper investigates characteristics of two selected fuzzy rule interpolation techniques for multidimensional input spaces and proposes an improved fuzzy rule interpolation technique to handle multidimensional input spaces. The three methods are compared by means of application examples in the field of petroleum engineering and mineral processing. The results show that the proposed fuzzy rule interpolation technique for multidimensional input spaces can be used in engineering applications.</description><subject>Computer aided software engineering</subject><subject>Fuzzy control</subject><subject>Fuzzy reasoning</subject><subject>Fuzzy rule interpolation</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Information technology</subject><subject>Input variables</subject><subject>Interpolation</subject><subject>multidimensional input spaces</subject><subject>Multidimensional systems</subject><subject>sparse fuzzy rules</subject><subject>Systems engineering and theory</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsHrylzuwmm6w3KVaFgpf20suySSe4JV_uJkj7600bQfA0L8PzDswTBLcIM0RQj6vFerOZcYB4lsZKoDwLJqgiDAFEdD5kkCKUCcjL4Mr7HQBGMaaTYLPoD4c9c31JzNYdubYpTWebmhWNY1VfdnZrK6r9sDLlgLR9x3xrcvLs23afzLRtafNTxT8xw3Ljifmu3-6vg4vClJ5ufuc0WC9eVvO3cPnx-j5_Xoa54KILeZZSAdxIxFwKStEIUUCWQpLkaSKiAgWnWEUQUZaorMBExkACkEMmIsXFNHgY77au-erJd7qyPqeyNDU1vdc8BQ5c4QDe_wN3Te-Gt7xWRyLiiRogHKHcNd47KnTrbGXcXiPoo2p9Uq2PqvWoeujcjR1LRH98HMs4leIHwFZ6pw</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Kok Wai Wong</creator><creator>Tikk, D.</creator><creator>Gedeon, T.D.</creator><creator>Koczy, L.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200512</creationdate><title>Fuzzy rule interpolation for multidimensional input spaces with applications: a case study</title><author>Kok Wai Wong ; Tikk, D. ; Gedeon, T.D. ; Koczy, L.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-2b8ef02a611c63e81a33f0b8077c8734f132e59404eb79bf17650e30120b34923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer aided software engineering</topic><topic>Fuzzy control</topic><topic>Fuzzy reasoning</topic><topic>Fuzzy rule interpolation</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Information technology</topic><topic>Input variables</topic><topic>Interpolation</topic><topic>multidimensional input spaces</topic><topic>Multidimensional systems</topic><topic>sparse fuzzy rules</topic><topic>Systems engineering and theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kok Wai Wong</creatorcontrib><creatorcontrib>Tikk, D.</creatorcontrib><creatorcontrib>Gedeon, T.D.</creatorcontrib><creatorcontrib>Koczy, L.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kok Wai Wong</au><au>Tikk, D.</au><au>Gedeon, T.D.</au><au>Koczy, L.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy rule interpolation for multidimensional input spaces with applications: a case study</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2005-12</date><risdate>2005</risdate><volume>13</volume><issue>6</issue><spage>809</spage><epage>819</epage><pages>809-819</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Fuzzy rule based systems have been very popular in many engineering applications. However, when generating fuzzy rules from the available information, this may result in a sparse fuzzy rule base. Fuzzy rule interpolation techniques have been established to solve the problems encountered in processing sparse fuzzy rule bases. In most engineering applications, the use of more than one input variable is common, however, the majority of the fuzzy rule interpolation techniques only present detailed analysis to one input variable case. This paper investigates characteristics of two selected fuzzy rule interpolation techniques for multidimensional input spaces and proposes an improved fuzzy rule interpolation technique to handle multidimensional input spaces. The three methods are compared by means of application examples in the field of petroleum engineering and mineral processing. The results show that the proposed fuzzy rule interpolation technique for multidimensional input spaces can be used in engineering applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2005.859316</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2005-12, Vol.13 (6), p.809-819
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_miscellaneous_28020291
source IEEE Electronic Library (IEL)
subjects Computer aided software engineering
Fuzzy control
Fuzzy reasoning
Fuzzy rule interpolation
Fuzzy sets
Fuzzy systems
Information technology
Input variables
Interpolation
multidimensional input spaces
Multidimensional systems
sparse fuzzy rules
Systems engineering and theory
title Fuzzy rule interpolation for multidimensional input spaces with applications: a case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20rule%20interpolation%20for%20multidimensional%20input%20spaces%20with%20applications:%20a%20case%20study&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Kok%20Wai%20Wong&rft.date=2005-12&rft.volume=13&rft.issue=6&rft.spage=809&rft.epage=819&rft.pages=809-819&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2005.859316&rft_dat=%3Cproquest_RIE%3E2581138321%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920294279&rft_id=info:pmid/&rft_ieee_id=1556586&rfr_iscdi=true