Fuzzy unit commitment scheduling using absolutely stochastic simulated annealing

This paper presents a new approach to the fuzzy unit commitment problem using the absolutely stochastic simulated annealing method. In every iteration, a solution is taken with a certain probability. Typically in the simulated annealing minimization method, a higher cost feasible solution is accepte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2006-05, Vol.21 (2), p.955-964
Hauptverfasser: Saber, A.Y., Senjyu, T., Miyagi, T., Urasaki, N., Funabashi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 964
container_issue 2
container_start_page 955
container_title IEEE transactions on power systems
container_volume 21
creator Saber, A.Y.
Senjyu, T.
Miyagi, T.
Urasaki, N.
Funabashi, T.
description This paper presents a new approach to the fuzzy unit commitment problem using the absolutely stochastic simulated annealing method. In every iteration, a solution is taken with a certain probability. Typically in the simulated annealing minimization method, a higher cost feasible solution is accepted with temperature-dependent probability, but other solutions are accepted deterministically. However, in this paper, all the solutions, both higher and lower cost, are associated with acceptance probabilities, e.g., the minimum membership degree of all the fuzzy variables. Besides, the number of bits flipping is decided by the linguistic fuzzy control. Excess units with system-dependent distribution handle constraints efficiently and reduce overlooking the optimal solution. To reduce the economic load dispatch calculations, a sign bit vector is introduced with imprecise calculation of the fuzzy model as well. The proposed method is tested using the reported problem data sets. Simulation results are compared to previous reported results. Numerical results show an improvement in solution cost and time compared to the results obtained from powerful algorithms.
doi_str_mv 10.1109/TPWRS.2006.873017
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28019866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1626403</ieee_id><sourcerecordid>28019866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-7e6b3c24559b175878be347209819e1c4061cd74016808e08b2bd3a4f85f1f733</originalsourceid><addsrcrecordid>eNp90U1LxDAQBuAgCq4fP0C8FA966jppmmR6FHFVEBRd8RjS7FQr_dAmOez-eruuIHjwMnOYZwaGl7EjDlPOoTifP7w8Pk0zADVFLYDrLTbhUmIKShfbbAKIMsVCwi7b8_4dRjgOJuxhFlerZRK7OiSub9s6tNSFxLs3WsSm7l6T6NfVlr5vYqBmmfjQuzfrQ-0SX7exsYEWie06smt_wHYq23g6_On77Hl2Nb-8Se_ur28vL-5Sl2c8pJpUKVyWS1mUXEvUWJLIdQYF8oK4y0Fxt9A5cIWABFhm5ULYvEJZ8UoLsc_ONnc_hv4zkg-mrb2jprEd9dEbLFQGQoEe5em_MkPgBSo1wpM_8L2PQzd-YVBJFBpyPiK-QW7ovR-oMh9D3dphaTiYdRTmOwqzjsJsohh3jjc7NRH9epWpHIT4AuPbhQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865837041</pqid></control><display><type>article</type><title>Fuzzy unit commitment scheduling using absolutely stochastic simulated annealing</title><source>IEEE Electronic Library (IEL)</source><creator>Saber, A.Y. ; Senjyu, T. ; Miyagi, T. ; Urasaki, N. ; Funabashi, T.</creator><creatorcontrib>Saber, A.Y. ; Senjyu, T. ; Miyagi, T. ; Urasaki, N. ; Funabashi, T.</creatorcontrib><description>This paper presents a new approach to the fuzzy unit commitment problem using the absolutely stochastic simulated annealing method. In every iteration, a solution is taken with a certain probability. Typically in the simulated annealing minimization method, a higher cost feasible solution is accepted with temperature-dependent probability, but other solutions are accepted deterministically. However, in this paper, all the solutions, both higher and lower cost, are associated with acceptance probabilities, e.g., the minimum membership degree of all the fuzzy variables. Besides, the number of bits flipping is decided by the linguistic fuzzy control. Excess units with system-dependent distribution handle constraints efficiently and reduce overlooking the optimal solution. To reduce the economic load dispatch calculations, a sign bit vector is introduced with imprecise calculation of the fuzzy model as well. The proposed method is tested using the reported problem data sets. Simulation results are compared to previous reported results. Numerical results show an improvement in solution cost and time compared to the results obtained from powerful algorithms.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2006.873017</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Best heat rate ; Cost engineering ; Costs ; Fuzzy ; Fuzzy control ; Fuzzy logic ; Fuzzy set theory ; Heuristic ; Large-scale systems ; linguistic fuzzy control ; Mathematical analysis ; Mathematical models ; Minimization methods ; Operations research ; Power generation economics ; Power system modeling ; Power system simulation ; Scheduling ; sign vector ; Simulated annealing ; simulated annealing (SA) ; Stochastic processes ; Stochasticity ; Studies ; unit commitment (UC)</subject><ispartof>IEEE transactions on power systems, 2006-05, Vol.21 (2), p.955-964</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-7e6b3c24559b175878be347209819e1c4061cd74016808e08b2bd3a4f85f1f733</citedby><cites>FETCH-LOGICAL-c421t-7e6b3c24559b175878be347209819e1c4061cd74016808e08b2bd3a4f85f1f733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1626403$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1626403$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saber, A.Y.</creatorcontrib><creatorcontrib>Senjyu, T.</creatorcontrib><creatorcontrib>Miyagi, T.</creatorcontrib><creatorcontrib>Urasaki, N.</creatorcontrib><creatorcontrib>Funabashi, T.</creatorcontrib><title>Fuzzy unit commitment scheduling using absolutely stochastic simulated annealing</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents a new approach to the fuzzy unit commitment problem using the absolutely stochastic simulated annealing method. In every iteration, a solution is taken with a certain probability. Typically in the simulated annealing minimization method, a higher cost feasible solution is accepted with temperature-dependent probability, but other solutions are accepted deterministically. However, in this paper, all the solutions, both higher and lower cost, are associated with acceptance probabilities, e.g., the minimum membership degree of all the fuzzy variables. Besides, the number of bits flipping is decided by the linguistic fuzzy control. Excess units with system-dependent distribution handle constraints efficiently and reduce overlooking the optimal solution. To reduce the economic load dispatch calculations, a sign bit vector is introduced with imprecise calculation of the fuzzy model as well. The proposed method is tested using the reported problem data sets. Simulation results are compared to previous reported results. Numerical results show an improvement in solution cost and time compared to the results obtained from powerful algorithms.</description><subject>Algorithms</subject><subject>Best heat rate</subject><subject>Cost engineering</subject><subject>Costs</subject><subject>Fuzzy</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Heuristic</subject><subject>Large-scale systems</subject><subject>linguistic fuzzy control</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Minimization methods</subject><subject>Operations research</subject><subject>Power generation economics</subject><subject>Power system modeling</subject><subject>Power system simulation</subject><subject>Scheduling</subject><subject>sign vector</subject><subject>Simulated annealing</subject><subject>simulated annealing (SA)</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>unit commitment (UC)</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90U1LxDAQBuAgCq4fP0C8FA966jppmmR6FHFVEBRd8RjS7FQr_dAmOez-eruuIHjwMnOYZwaGl7EjDlPOoTifP7w8Pk0zADVFLYDrLTbhUmIKShfbbAKIMsVCwi7b8_4dRjgOJuxhFlerZRK7OiSub9s6tNSFxLs3WsSm7l6T6NfVlr5vYqBmmfjQuzfrQ-0SX7exsYEWie06smt_wHYq23g6_On77Hl2Nb-8Se_ur28vL-5Sl2c8pJpUKVyWS1mUXEvUWJLIdQYF8oK4y0Fxt9A5cIWABFhm5ULYvEJZ8UoLsc_ONnc_hv4zkg-mrb2jprEd9dEbLFQGQoEe5em_MkPgBSo1wpM_8L2PQzd-YVBJFBpyPiK-QW7ovR-oMh9D3dphaTiYdRTmOwqzjsJsohh3jjc7NRH9epWpHIT4AuPbhQ8</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Saber, A.Y.</creator><creator>Senjyu, T.</creator><creator>Miyagi, T.</creator><creator>Urasaki, N.</creator><creator>Funabashi, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20060501</creationdate><title>Fuzzy unit commitment scheduling using absolutely stochastic simulated annealing</title><author>Saber, A.Y. ; Senjyu, T. ; Miyagi, T. ; Urasaki, N. ; Funabashi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-7e6b3c24559b175878be347209819e1c4061cd74016808e08b2bd3a4f85f1f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Best heat rate</topic><topic>Cost engineering</topic><topic>Costs</topic><topic>Fuzzy</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Heuristic</topic><topic>Large-scale systems</topic><topic>linguistic fuzzy control</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Minimization methods</topic><topic>Operations research</topic><topic>Power generation economics</topic><topic>Power system modeling</topic><topic>Power system simulation</topic><topic>Scheduling</topic><topic>sign vector</topic><topic>Simulated annealing</topic><topic>simulated annealing (SA)</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>unit commitment (UC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saber, A.Y.</creatorcontrib><creatorcontrib>Senjyu, T.</creatorcontrib><creatorcontrib>Miyagi, T.</creatorcontrib><creatorcontrib>Urasaki, N.</creatorcontrib><creatorcontrib>Funabashi, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saber, A.Y.</au><au>Senjyu, T.</au><au>Miyagi, T.</au><au>Urasaki, N.</au><au>Funabashi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy unit commitment scheduling using absolutely stochastic simulated annealing</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2006-05-01</date><risdate>2006</risdate><volume>21</volume><issue>2</issue><spage>955</spage><epage>964</epage><pages>955-964</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a new approach to the fuzzy unit commitment problem using the absolutely stochastic simulated annealing method. In every iteration, a solution is taken with a certain probability. Typically in the simulated annealing minimization method, a higher cost feasible solution is accepted with temperature-dependent probability, but other solutions are accepted deterministically. However, in this paper, all the solutions, both higher and lower cost, are associated with acceptance probabilities, e.g., the minimum membership degree of all the fuzzy variables. Besides, the number of bits flipping is decided by the linguistic fuzzy control. Excess units with system-dependent distribution handle constraints efficiently and reduce overlooking the optimal solution. To reduce the economic load dispatch calculations, a sign bit vector is introduced with imprecise calculation of the fuzzy model as well. The proposed method is tested using the reported problem data sets. Simulation results are compared to previous reported results. Numerical results show an improvement in solution cost and time compared to the results obtained from powerful algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2006.873017</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2006-05, Vol.21 (2), p.955-964
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_28019866
source IEEE Electronic Library (IEL)
subjects Algorithms
Best heat rate
Cost engineering
Costs
Fuzzy
Fuzzy control
Fuzzy logic
Fuzzy set theory
Heuristic
Large-scale systems
linguistic fuzzy control
Mathematical analysis
Mathematical models
Minimization methods
Operations research
Power generation economics
Power system modeling
Power system simulation
Scheduling
sign vector
Simulated annealing
simulated annealing (SA)
Stochastic processes
Stochasticity
Studies
unit commitment (UC)
title Fuzzy unit commitment scheduling using absolutely stochastic simulated annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20unit%20commitment%20scheduling%20using%20absolutely%20stochastic%20simulated%20annealing&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Saber,%20A.Y.&rft.date=2006-05-01&rft.volume=21&rft.issue=2&rft.spage=955&rft.epage=964&rft.pages=955-964&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2006.873017&rft_dat=%3Cproquest_RIE%3E28019866%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865837041&rft_id=info:pmid/&rft_ieee_id=1626403&rfr_iscdi=true