Material stock analysis of urban road from nighttime light data based on a bottom-up approach
In recent years, there has been an increasing focus on the dynamics of material stock, that is, the basis of material flow in the entire ecosystem. With the gradual improvement of the global road network encryption project, the uncontrolled extraction, processing, and transportation of raw materials...
Gespeichert in:
Veröffentlicht in: | Environmental research 2023-07, Vol.228, p.115902-115902, Article 115902 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115902 |
---|---|
container_issue | |
container_start_page | 115902 |
container_title | Environmental research |
container_volume | 228 |
creator | Zhao, Fei Wu, Huixia Zhu, Sijin Zeng, Hongyun Zhao, Zhifang Yang, Xutao Zhang, Sujin |
description | In recent years, there has been an increasing focus on the dynamics of material stock, that is, the basis of material flow in the entire ecosystem. With the gradual improvement of the global road network encryption project, the uncontrolled extraction, processing, and transportation of raw materials impose serious resource concerns and environmental pressure. Quantifying material stocks enable governments to formulate scientific policies because socio-economic metabolism, including resource allocation, use, and waste recovery, can be systematically assessed. In this study, OpenStreetMap road network data were used to extract the urban road skeleton, and nighttime light images were divided by watershed to construct regression equations based on geographical location attributes. Resultantly, a generic road material stock estimation model was developed and applied to Kunming. We concluded that (1) the top three stocks are stone chips, macadam, and grit (total weight is 380 million tons), (2) the proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar, and (3) the unit area stock decreases as the road grade declines; therefore, the branch road has the lowest unit stock.
[Display omitted]
•Generic road material stock estimation model developed and applied to Kunming.•Top three stocks are stone chips, macadam, and grit.•Proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar.•Unit area stock decreases as the road grade declines. |
doi_str_mv | 10.1016/j.envres.2023.115902 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2801980908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013935123006941</els_id><sourcerecordid>2801980908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-534ddc214ecc6d58b2724d612cb03b74dfbc356b7c7fe80edab4c694c79839423</originalsourceid><addsrcrecordid>eNp9kElLBDEQhYMoOi7_QCRHLz1m6yUXQcQNFC96lJClWjN2d8YkLfjv7aHVo6d6Be_Voz6EjilZUkKrs9UShs8IackI40tKS0nYFlpQIquCyJJvowUhlBeSl3QP7ae0mlZacrKL9nhNSsmZWKCXB50het3hlIN9x3rQ3VfyCYcWj9HoAcegHW5j6PHgX99y9j3gbqOw01ljoxM4HAY8yZBz6ItxjfV6PcXs2yHaaXWX4OhnHqDn66uny9vi_vHm7vLivrC8YrkouXDOMirA2sqVjWE1E66izBrCTS1caywvK1PbuoWGgNNG2EoKW8uGS8H4ATqd7061HyOkrHqfLHSdHiCMSbGGUNkQSZrJKmarjSGlCK1aR9_r-KUoURuwaqVmsGoDVs1gp9jJT8NoenB_oV-Sk-F8NsD056eHqJL1MFhwPoLNygX_f8M3VVOL9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801980908</pqid></control><display><type>article</type><title>Material stock analysis of urban road from nighttime light data based on a bottom-up approach</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Fei ; Wu, Huixia ; Zhu, Sijin ; Zeng, Hongyun ; Zhao, Zhifang ; Yang, Xutao ; Zhang, Sujin</creator><creatorcontrib>Zhao, Fei ; Wu, Huixia ; Zhu, Sijin ; Zeng, Hongyun ; Zhao, Zhifang ; Yang, Xutao ; Zhang, Sujin</creatorcontrib><description>In recent years, there has been an increasing focus on the dynamics of material stock, that is, the basis of material flow in the entire ecosystem. With the gradual improvement of the global road network encryption project, the uncontrolled extraction, processing, and transportation of raw materials impose serious resource concerns and environmental pressure. Quantifying material stocks enable governments to formulate scientific policies because socio-economic metabolism, including resource allocation, use, and waste recovery, can be systematically assessed. In this study, OpenStreetMap road network data were used to extract the urban road skeleton, and nighttime light images were divided by watershed to construct regression equations based on geographical location attributes. Resultantly, a generic road material stock estimation model was developed and applied to Kunming. We concluded that (1) the top three stocks are stone chips, macadam, and grit (total weight is 380 million tons), (2) the proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar, and (3) the unit area stock decreases as the road grade declines; therefore, the branch road has the lowest unit stock.
[Display omitted]
•Generic road material stock estimation model developed and applied to Kunming.•Top three stocks are stone chips, macadam, and grit.•Proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar.•Unit area stock decreases as the road grade declines.</description><identifier>ISSN: 0013-9351</identifier><identifier>EISSN: 1096-0953</identifier><identifier>DOI: 10.1016/j.envres.2023.115902</identifier><identifier>PMID: 37059324</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Coal Ash ; Ecosystem ; Material stock analysis ; Nighttime lights ; OpenStreetMap ; Remote sensing ; Transportation ; Urban road system</subject><ispartof>Environmental research, 2023-07, Vol.228, p.115902-115902, Article 115902</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-534ddc214ecc6d58b2724d612cb03b74dfbc356b7c7fe80edab4c694c79839423</citedby><cites>FETCH-LOGICAL-c362t-534ddc214ecc6d58b2724d612cb03b74dfbc356b7c7fe80edab4c694c79839423</cites><orcidid>0000-0002-2801-0775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envres.2023.115902$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37059324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Fei</creatorcontrib><creatorcontrib>Wu, Huixia</creatorcontrib><creatorcontrib>Zhu, Sijin</creatorcontrib><creatorcontrib>Zeng, Hongyun</creatorcontrib><creatorcontrib>Zhao, Zhifang</creatorcontrib><creatorcontrib>Yang, Xutao</creatorcontrib><creatorcontrib>Zhang, Sujin</creatorcontrib><title>Material stock analysis of urban road from nighttime light data based on a bottom-up approach</title><title>Environmental research</title><addtitle>Environ Res</addtitle><description>In recent years, there has been an increasing focus on the dynamics of material stock, that is, the basis of material flow in the entire ecosystem. With the gradual improvement of the global road network encryption project, the uncontrolled extraction, processing, and transportation of raw materials impose serious resource concerns and environmental pressure. Quantifying material stocks enable governments to formulate scientific policies because socio-economic metabolism, including resource allocation, use, and waste recovery, can be systematically assessed. In this study, OpenStreetMap road network data were used to extract the urban road skeleton, and nighttime light images were divided by watershed to construct regression equations based on geographical location attributes. Resultantly, a generic road material stock estimation model was developed and applied to Kunming. We concluded that (1) the top three stocks are stone chips, macadam, and grit (total weight is 380 million tons), (2) the proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar, and (3) the unit area stock decreases as the road grade declines; therefore, the branch road has the lowest unit stock.
[Display omitted]
•Generic road material stock estimation model developed and applied to Kunming.•Top three stocks are stone chips, macadam, and grit.•Proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar.•Unit area stock decreases as the road grade declines.</description><subject>Coal Ash</subject><subject>Ecosystem</subject><subject>Material stock analysis</subject><subject>Nighttime lights</subject><subject>OpenStreetMap</subject><subject>Remote sensing</subject><subject>Transportation</subject><subject>Urban road system</subject><issn>0013-9351</issn><issn>1096-0953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kElLBDEQhYMoOi7_QCRHLz1m6yUXQcQNFC96lJClWjN2d8YkLfjv7aHVo6d6Be_Voz6EjilZUkKrs9UShs8IackI40tKS0nYFlpQIquCyJJvowUhlBeSl3QP7ae0mlZacrKL9nhNSsmZWKCXB50het3hlIN9x3rQ3VfyCYcWj9HoAcegHW5j6PHgX99y9j3gbqOw01ljoxM4HAY8yZBz6ItxjfV6PcXs2yHaaXWX4OhnHqDn66uny9vi_vHm7vLivrC8YrkouXDOMirA2sqVjWE1E66izBrCTS1caywvK1PbuoWGgNNG2EoKW8uGS8H4ATqd7061HyOkrHqfLHSdHiCMSbGGUNkQSZrJKmarjSGlCK1aR9_r-KUoURuwaqVmsGoDVs1gp9jJT8NoenB_oV-Sk-F8NsD056eHqJL1MFhwPoLNygX_f8M3VVOL9A</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zhao, Fei</creator><creator>Wu, Huixia</creator><creator>Zhu, Sijin</creator><creator>Zeng, Hongyun</creator><creator>Zhao, Zhifang</creator><creator>Yang, Xutao</creator><creator>Zhang, Sujin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2801-0775</orcidid></search><sort><creationdate>20230701</creationdate><title>Material stock analysis of urban road from nighttime light data based on a bottom-up approach</title><author>Zhao, Fei ; Wu, Huixia ; Zhu, Sijin ; Zeng, Hongyun ; Zhao, Zhifang ; Yang, Xutao ; Zhang, Sujin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-534ddc214ecc6d58b2724d612cb03b74dfbc356b7c7fe80edab4c694c79839423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coal Ash</topic><topic>Ecosystem</topic><topic>Material stock analysis</topic><topic>Nighttime lights</topic><topic>OpenStreetMap</topic><topic>Remote sensing</topic><topic>Transportation</topic><topic>Urban road system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Fei</creatorcontrib><creatorcontrib>Wu, Huixia</creatorcontrib><creatorcontrib>Zhu, Sijin</creatorcontrib><creatorcontrib>Zeng, Hongyun</creatorcontrib><creatorcontrib>Zhao, Zhifang</creatorcontrib><creatorcontrib>Yang, Xutao</creatorcontrib><creatorcontrib>Zhang, Sujin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Fei</au><au>Wu, Huixia</au><au>Zhu, Sijin</au><au>Zeng, Hongyun</au><au>Zhao, Zhifang</au><au>Yang, Xutao</au><au>Zhang, Sujin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material stock analysis of urban road from nighttime light data based on a bottom-up approach</atitle><jtitle>Environmental research</jtitle><addtitle>Environ Res</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>228</volume><spage>115902</spage><epage>115902</epage><pages>115902-115902</pages><artnum>115902</artnum><issn>0013-9351</issn><eissn>1096-0953</eissn><abstract>In recent years, there has been an increasing focus on the dynamics of material stock, that is, the basis of material flow in the entire ecosystem. With the gradual improvement of the global road network encryption project, the uncontrolled extraction, processing, and transportation of raw materials impose serious resource concerns and environmental pressure. Quantifying material stocks enable governments to formulate scientific policies because socio-economic metabolism, including resource allocation, use, and waste recovery, can be systematically assessed. In this study, OpenStreetMap road network data were used to extract the urban road skeleton, and nighttime light images were divided by watershed to construct regression equations based on geographical location attributes. Resultantly, a generic road material stock estimation model was developed and applied to Kunming. We concluded that (1) the top three stocks are stone chips, macadam, and grit (total weight is 380 million tons), (2) the proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar, and (3) the unit area stock decreases as the road grade declines; therefore, the branch road has the lowest unit stock.
[Display omitted]
•Generic road material stock estimation model developed and applied to Kunming.•Top three stocks are stone chips, macadam, and grit.•Proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar.•Unit area stock decreases as the road grade declines.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>37059324</pmid><doi>10.1016/j.envres.2023.115902</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2801-0775</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-9351 |
ispartof | Environmental research, 2023-07, Vol.228, p.115902-115902, Article 115902 |
issn | 0013-9351 1096-0953 |
language | eng |
recordid | cdi_proquest_miscellaneous_2801980908 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Coal Ash Ecosystem Material stock analysis Nighttime lights OpenStreetMap Remote sensing Transportation Urban road system |
title | Material stock analysis of urban road from nighttime light data based on a bottom-up approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20stock%20analysis%20of%20urban%20road%20from%20nighttime%20light%20data%20based%20on%20a%20bottom-up%20approach&rft.jtitle=Environmental%20research&rft.au=Zhao,%20Fei&rft.date=2023-07-01&rft.volume=228&rft.spage=115902&rft.epage=115902&rft.pages=115902-115902&rft.artnum=115902&rft.issn=0013-9351&rft.eissn=1096-0953&rft_id=info:doi/10.1016/j.envres.2023.115902&rft_dat=%3Cproquest_cross%3E2801980908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801980908&rft_id=info:pmid/37059324&rft_els_id=S0013935123006941&rfr_iscdi=true |