Material stock analysis of urban road from nighttime light data based on a bottom-up approach

In recent years, there has been an increasing focus on the dynamics of material stock, that is, the basis of material flow in the entire ecosystem. With the gradual improvement of the global road network encryption project, the uncontrolled extraction, processing, and transportation of raw materials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2023-07, Vol.228, p.115902-115902, Article 115902
Hauptverfasser: Zhao, Fei, Wu, Huixia, Zhu, Sijin, Zeng, Hongyun, Zhao, Zhifang, Yang, Xutao, Zhang, Sujin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115902
container_issue
container_start_page 115902
container_title Environmental research
container_volume 228
creator Zhao, Fei
Wu, Huixia
Zhu, Sijin
Zeng, Hongyun
Zhao, Zhifang
Yang, Xutao
Zhang, Sujin
description In recent years, there has been an increasing focus on the dynamics of material stock, that is, the basis of material flow in the entire ecosystem. With the gradual improvement of the global road network encryption project, the uncontrolled extraction, processing, and transportation of raw materials impose serious resource concerns and environmental pressure. Quantifying material stocks enable governments to formulate scientific policies because socio-economic metabolism, including resource allocation, use, and waste recovery, can be systematically assessed. In this study, OpenStreetMap road network data were used to extract the urban road skeleton, and nighttime light images were divided by watershed to construct regression equations based on geographical location attributes. Resultantly, a generic road material stock estimation model was developed and applied to Kunming. We concluded that (1) the top three stocks are stone chips, macadam, and grit (total weight is 380 million tons), (2) the proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar, and (3) the unit area stock decreases as the road grade declines; therefore, the branch road has the lowest unit stock. [Display omitted] •Generic road material stock estimation model developed and applied to Kunming.•Top three stocks are stone chips, macadam, and grit.•Proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar.•Unit area stock decreases as the road grade declines.
doi_str_mv 10.1016/j.envres.2023.115902
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2801980908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013935123006941</els_id><sourcerecordid>2801980908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-534ddc214ecc6d58b2724d612cb03b74dfbc356b7c7fe80edab4c694c79839423</originalsourceid><addsrcrecordid>eNp9kElLBDEQhYMoOi7_QCRHLz1m6yUXQcQNFC96lJClWjN2d8YkLfjv7aHVo6d6Be_Voz6EjilZUkKrs9UShs8IackI40tKS0nYFlpQIquCyJJvowUhlBeSl3QP7ae0mlZacrKL9nhNSsmZWKCXB50het3hlIN9x3rQ3VfyCYcWj9HoAcegHW5j6PHgX99y9j3gbqOw01ljoxM4HAY8yZBz6ItxjfV6PcXs2yHaaXWX4OhnHqDn66uny9vi_vHm7vLivrC8YrkouXDOMirA2sqVjWE1E66izBrCTS1caywvK1PbuoWGgNNG2EoKW8uGS8H4ATqd7061HyOkrHqfLHSdHiCMSbGGUNkQSZrJKmarjSGlCK1aR9_r-KUoURuwaqVmsGoDVs1gp9jJT8NoenB_oV-Sk-F8NsD056eHqJL1MFhwPoLNygX_f8M3VVOL9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801980908</pqid></control><display><type>article</type><title>Material stock analysis of urban road from nighttime light data based on a bottom-up approach</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Fei ; Wu, Huixia ; Zhu, Sijin ; Zeng, Hongyun ; Zhao, Zhifang ; Yang, Xutao ; Zhang, Sujin</creator><creatorcontrib>Zhao, Fei ; Wu, Huixia ; Zhu, Sijin ; Zeng, Hongyun ; Zhao, Zhifang ; Yang, Xutao ; Zhang, Sujin</creatorcontrib><description>In recent years, there has been an increasing focus on the dynamics of material stock, that is, the basis of material flow in the entire ecosystem. With the gradual improvement of the global road network encryption project, the uncontrolled extraction, processing, and transportation of raw materials impose serious resource concerns and environmental pressure. Quantifying material stocks enable governments to formulate scientific policies because socio-economic metabolism, including resource allocation, use, and waste recovery, can be systematically assessed. In this study, OpenStreetMap road network data were used to extract the urban road skeleton, and nighttime light images were divided by watershed to construct regression equations based on geographical location attributes. Resultantly, a generic road material stock estimation model was developed and applied to Kunming. We concluded that (1) the top three stocks are stone chips, macadam, and grit (total weight is 380 million tons), (2) the proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar, and (3) the unit area stock decreases as the road grade declines; therefore, the branch road has the lowest unit stock. [Display omitted] •Generic road material stock estimation model developed and applied to Kunming.•Top three stocks are stone chips, macadam, and grit.•Proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar.•Unit area stock decreases as the road grade declines.</description><identifier>ISSN: 0013-9351</identifier><identifier>EISSN: 1096-0953</identifier><identifier>DOI: 10.1016/j.envres.2023.115902</identifier><identifier>PMID: 37059324</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Coal Ash ; Ecosystem ; Material stock analysis ; Nighttime lights ; OpenStreetMap ; Remote sensing ; Transportation ; Urban road system</subject><ispartof>Environmental research, 2023-07, Vol.228, p.115902-115902, Article 115902</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-534ddc214ecc6d58b2724d612cb03b74dfbc356b7c7fe80edab4c694c79839423</citedby><cites>FETCH-LOGICAL-c362t-534ddc214ecc6d58b2724d612cb03b74dfbc356b7c7fe80edab4c694c79839423</cites><orcidid>0000-0002-2801-0775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envres.2023.115902$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37059324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Fei</creatorcontrib><creatorcontrib>Wu, Huixia</creatorcontrib><creatorcontrib>Zhu, Sijin</creatorcontrib><creatorcontrib>Zeng, Hongyun</creatorcontrib><creatorcontrib>Zhao, Zhifang</creatorcontrib><creatorcontrib>Yang, Xutao</creatorcontrib><creatorcontrib>Zhang, Sujin</creatorcontrib><title>Material stock analysis of urban road from nighttime light data based on a bottom-up approach</title><title>Environmental research</title><addtitle>Environ Res</addtitle><description>In recent years, there has been an increasing focus on the dynamics of material stock, that is, the basis of material flow in the entire ecosystem. With the gradual improvement of the global road network encryption project, the uncontrolled extraction, processing, and transportation of raw materials impose serious resource concerns and environmental pressure. Quantifying material stocks enable governments to formulate scientific policies because socio-economic metabolism, including resource allocation, use, and waste recovery, can be systematically assessed. In this study, OpenStreetMap road network data were used to extract the urban road skeleton, and nighttime light images were divided by watershed to construct regression equations based on geographical location attributes. Resultantly, a generic road material stock estimation model was developed and applied to Kunming. We concluded that (1) the top three stocks are stone chips, macadam, and grit (total weight is 380 million tons), (2) the proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar, and (3) the unit area stock decreases as the road grade declines; therefore, the branch road has the lowest unit stock. [Display omitted] •Generic road material stock estimation model developed and applied to Kunming.•Top three stocks are stone chips, macadam, and grit.•Proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar.•Unit area stock decreases as the road grade declines.</description><subject>Coal Ash</subject><subject>Ecosystem</subject><subject>Material stock analysis</subject><subject>Nighttime lights</subject><subject>OpenStreetMap</subject><subject>Remote sensing</subject><subject>Transportation</subject><subject>Urban road system</subject><issn>0013-9351</issn><issn>1096-0953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kElLBDEQhYMoOi7_QCRHLz1m6yUXQcQNFC96lJClWjN2d8YkLfjv7aHVo6d6Be_Voz6EjilZUkKrs9UShs8IackI40tKS0nYFlpQIquCyJJvowUhlBeSl3QP7ae0mlZacrKL9nhNSsmZWKCXB50het3hlIN9x3rQ3VfyCYcWj9HoAcegHW5j6PHgX99y9j3gbqOw01ljoxM4HAY8yZBz6ItxjfV6PcXs2yHaaXWX4OhnHqDn66uny9vi_vHm7vLivrC8YrkouXDOMirA2sqVjWE1E66izBrCTS1caywvK1PbuoWGgNNG2EoKW8uGS8H4ATqd7061HyOkrHqfLHSdHiCMSbGGUNkQSZrJKmarjSGlCK1aR9_r-KUoURuwaqVmsGoDVs1gp9jJT8NoenB_oV-Sk-F8NsD056eHqJL1MFhwPoLNygX_f8M3VVOL9A</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zhao, Fei</creator><creator>Wu, Huixia</creator><creator>Zhu, Sijin</creator><creator>Zeng, Hongyun</creator><creator>Zhao, Zhifang</creator><creator>Yang, Xutao</creator><creator>Zhang, Sujin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2801-0775</orcidid></search><sort><creationdate>20230701</creationdate><title>Material stock analysis of urban road from nighttime light data based on a bottom-up approach</title><author>Zhao, Fei ; Wu, Huixia ; Zhu, Sijin ; Zeng, Hongyun ; Zhao, Zhifang ; Yang, Xutao ; Zhang, Sujin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-534ddc214ecc6d58b2724d612cb03b74dfbc356b7c7fe80edab4c694c79839423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coal Ash</topic><topic>Ecosystem</topic><topic>Material stock analysis</topic><topic>Nighttime lights</topic><topic>OpenStreetMap</topic><topic>Remote sensing</topic><topic>Transportation</topic><topic>Urban road system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Fei</creatorcontrib><creatorcontrib>Wu, Huixia</creatorcontrib><creatorcontrib>Zhu, Sijin</creatorcontrib><creatorcontrib>Zeng, Hongyun</creatorcontrib><creatorcontrib>Zhao, Zhifang</creatorcontrib><creatorcontrib>Yang, Xutao</creatorcontrib><creatorcontrib>Zhang, Sujin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Fei</au><au>Wu, Huixia</au><au>Zhu, Sijin</au><au>Zeng, Hongyun</au><au>Zhao, Zhifang</au><au>Yang, Xutao</au><au>Zhang, Sujin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material stock analysis of urban road from nighttime light data based on a bottom-up approach</atitle><jtitle>Environmental research</jtitle><addtitle>Environ Res</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>228</volume><spage>115902</spage><epage>115902</epage><pages>115902-115902</pages><artnum>115902</artnum><issn>0013-9351</issn><eissn>1096-0953</eissn><abstract>In recent years, there has been an increasing focus on the dynamics of material stock, that is, the basis of material flow in the entire ecosystem. With the gradual improvement of the global road network encryption project, the uncontrolled extraction, processing, and transportation of raw materials impose serious resource concerns and environmental pressure. Quantifying material stocks enable governments to formulate scientific policies because socio-economic metabolism, including resource allocation, use, and waste recovery, can be systematically assessed. In this study, OpenStreetMap road network data were used to extract the urban road skeleton, and nighttime light images were divided by watershed to construct regression equations based on geographical location attributes. Resultantly, a generic road material stock estimation model was developed and applied to Kunming. We concluded that (1) the top three stocks are stone chips, macadam, and grit (total weight is 380 million tons), (2) the proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar, and (3) the unit area stock decreases as the road grade declines; therefore, the branch road has the lowest unit stock. [Display omitted] •Generic road material stock estimation model developed and applied to Kunming.•Top three stocks are stone chips, macadam, and grit.•Proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar.•Unit area stock decreases as the road grade declines.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>37059324</pmid><doi>10.1016/j.envres.2023.115902</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2801-0775</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-9351
ispartof Environmental research, 2023-07, Vol.228, p.115902-115902, Article 115902
issn 0013-9351
1096-0953
language eng
recordid cdi_proquest_miscellaneous_2801980908
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Coal Ash
Ecosystem
Material stock analysis
Nighttime lights
OpenStreetMap
Remote sensing
Transportation
Urban road system
title Material stock analysis of urban road from nighttime light data based on a bottom-up approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20stock%20analysis%20of%20urban%20road%20from%20nighttime%20light%20data%20based%20on%20a%20bottom-up%20approach&rft.jtitle=Environmental%20research&rft.au=Zhao,%20Fei&rft.date=2023-07-01&rft.volume=228&rft.spage=115902&rft.epage=115902&rft.pages=115902-115902&rft.artnum=115902&rft.issn=0013-9351&rft.eissn=1096-0953&rft_id=info:doi/10.1016/j.envres.2023.115902&rft_dat=%3Cproquest_cross%3E2801980908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801980908&rft_id=info:pmid/37059324&rft_els_id=S0013935123006941&rfr_iscdi=true