Not so dangerous? PET microplastics toxicity on freshwater microalgae and cyanobacteria
Microalgae and cyanobacteria are among the most important primary producers and are responsible for the production of 50–80% of the oxygen on Earth. They can be significantly affected by plastic pollution, as the vast majority of plastic waste ends up in rivers and then the oceans. This research foc...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2023-07, Vol.329, p.121628-121628, Article 121628 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121628 |
---|---|
container_issue | |
container_start_page | 121628 |
container_title | Environmental pollution (1987) |
container_volume | 329 |
creator | Pencik, Ondrej Molnarova, Katarina Durdakova, Michaela Kolackova, Martina Klofac, Daniel Kucsera, Attilla Capal, Petr Svec, Pavel Bytesnikova, Zuzana Richtera, Lukas Brtnický, Martin Adam, Vojtech Huska, Dalibor |
description | Microalgae and cyanobacteria are among the most important primary producers and are responsible for the production of 50–80% of the oxygen on Earth. They can be significantly affected by plastic pollution, as the vast majority of plastic waste ends up in rivers and then the oceans. This research focuses on green microalgae Chlorella vulgaris (C. vulgaris), Chlamydomonas reinhardtii (C. reinhardtii), filamentous cyanobacterium Limnospira (Arthrospira) maxima (L.(A.) maxima) and how they are affected by environmentally relevant PET-MPs (polyethylene-terephtalate microplastics). Manufactured PET-MPs have asymmetric shape, size between 3 and 7 μm and were used in concentrations ranging from 5 mg/L to 80 mg/L. The highest inhibitory rate of growth was found in C. reinhardtii (−24%). Concentration-dependent changes in chlorophyll a composition were found in C. vulgaris and C. reinhardtii, not in L. (A.) maxima. Furthermore, cell damage was detected in all three organisms by CRYO-SEM (shriveling, cell wall disruption), but the cyanobacterium was the least damaged. A PET-fingerprint was detected on the surface of all tested organisms using FTIR, indicating the adherence of PET-MPs. The highest rate of PET-MPs adsorption was detected in L. (A.) maxima. Specifically, characteristic spectra were observed at ∼721, 850, 1100, 1275, 1342, and 1715 cm−1 which are specific for functional groups of PET-MPs. Nitrogen and carbon content significantly increased in L. (A.) maxima under exposure to 80 mg/L due to the PET-MPs adherence and mechanical stress. In all three tested organisms, weak exposure-related ROS generation was detected. In general, cyanobacteria seem to be more resistant to the effects of MPs. However, organisms in the aquatic environment are exposed to MPs over a longer time scale, so it is important to use the present findings for further longer-term experiments on environmentally relevant organisms.
[Display omitted]
•Concentration-dependent decrease in chlorophyll a composition in eukaryotes (C. vulgaris, C. reinhardtii).•Slightly inhibitory effect on growth and mechanical damage observed in eukaryotic species.•Cell surface showed high interaction rate with the PET-MPs in L. (A.) maxima.•Increase in L. (A.) maxima carbon and nitrogen content after exposure to high concentrations of PET-MPs. |
doi_str_mv | 10.1016/j.envpol.2023.121628 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2801980551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749123006309</els_id><sourcerecordid>2801980551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-c179a4019be4e90e11aaec1e7be3fb4c0265dcbeb47fa6fcff66930da296f5d43</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhi0EgpTyDyrkI5dN_bXe7IWqQmlBQsAhFUdr1jtOHW3Wqb0J5N_X0aY9cprDPPPxPoR84WzKGddfV1Psd5vQTQUTcsoF12J2QiZ8VslCK6FOyYQJXReVqvkF-ZTSijGmpJTn5EJWrKx5xSfk9SkMNAXaQr_EGLbpG32ZL-ja2xg2HaTB20SH8O6tH_Y09NRFTL_fYMA4QtAtASn0LbV76EMDNrc8fCZnDrqEV8d6SX79mC_u7ovH558Pd98fCyu1GArLqxoU43WDCmuGnAOg5Vg1KF2jbE5QtrbBRlUOtLPOaV1L1oKotStbJS_Jzbh3E8OfLabBrH2y2HXQY05jxCwvn7Gy5BlVI5q_TimiM5vo1xD3hjNzUGpWZlRqDkrNqDSPXR8vbJs1tv-H_jnMwO0IYM658xhNsh57i62PaAfTBv_xhb9Vy4tx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801980551</pqid></control><display><type>article</type><title>Not so dangerous? PET microplastics toxicity on freshwater microalgae and cyanobacteria</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Pencik, Ondrej ; Molnarova, Katarina ; Durdakova, Michaela ; Kolackova, Martina ; Klofac, Daniel ; Kucsera, Attilla ; Capal, Petr ; Svec, Pavel ; Bytesnikova, Zuzana ; Richtera, Lukas ; Brtnický, Martin ; Adam, Vojtech ; Huska, Dalibor</creator><creatorcontrib>Pencik, Ondrej ; Molnarova, Katarina ; Durdakova, Michaela ; Kolackova, Martina ; Klofac, Daniel ; Kucsera, Attilla ; Capal, Petr ; Svec, Pavel ; Bytesnikova, Zuzana ; Richtera, Lukas ; Brtnický, Martin ; Adam, Vojtech ; Huska, Dalibor</creatorcontrib><description>Microalgae and cyanobacteria are among the most important primary producers and are responsible for the production of 50–80% of the oxygen on Earth. They can be significantly affected by plastic pollution, as the vast majority of plastic waste ends up in rivers and then the oceans. This research focuses on green microalgae Chlorella vulgaris (C. vulgaris), Chlamydomonas reinhardtii (C. reinhardtii), filamentous cyanobacterium Limnospira (Arthrospira) maxima (L.(A.) maxima) and how they are affected by environmentally relevant PET-MPs (polyethylene-terephtalate microplastics). Manufactured PET-MPs have asymmetric shape, size between 3 and 7 μm and were used in concentrations ranging from 5 mg/L to 80 mg/L. The highest inhibitory rate of growth was found in C. reinhardtii (−24%). Concentration-dependent changes in chlorophyll a composition were found in C. vulgaris and C. reinhardtii, not in L. (A.) maxima. Furthermore, cell damage was detected in all three organisms by CRYO-SEM (shriveling, cell wall disruption), but the cyanobacterium was the least damaged. A PET-fingerprint was detected on the surface of all tested organisms using FTIR, indicating the adherence of PET-MPs. The highest rate of PET-MPs adsorption was detected in L. (A.) maxima. Specifically, characteristic spectra were observed at ∼721, 850, 1100, 1275, 1342, and 1715 cm−1 which are specific for functional groups of PET-MPs. Nitrogen and carbon content significantly increased in L. (A.) maxima under exposure to 80 mg/L due to the PET-MPs adherence and mechanical stress. In all three tested organisms, weak exposure-related ROS generation was detected. In general, cyanobacteria seem to be more resistant to the effects of MPs. However, organisms in the aquatic environment are exposed to MPs over a longer time scale, so it is important to use the present findings for further longer-term experiments on environmentally relevant organisms.
[Display omitted]
•Concentration-dependent decrease in chlorophyll a composition in eukaryotes (C. vulgaris, C. reinhardtii).•Slightly inhibitory effect on growth and mechanical damage observed in eukaryotic species.•Cell surface showed high interaction rate with the PET-MPs in L. (A.) maxima.•Increase in L. (A.) maxima carbon and nitrogen content after exposure to high concentrations of PET-MPs.</description><identifier>ISSN: 0269-7491</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2023.121628</identifier><identifier>PMID: 37059171</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>C. reinhardtii ; C. vulgaris ; Chlorella vulgaris ; Chlorophyll A ; Cyanobacteria ; Fresh Water ; L. (A.) maxima ; Microalgae ; Microplastic synthesis ; Microplastics ; Microplastics - toxicity ; Plastics - toxicity ; Stress ; Toxicity ; Water Pollutants, Chemical - analysis ; Water pollution</subject><ispartof>Environmental pollution (1987), 2023-07, Vol.329, p.121628-121628, Article 121628</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-c179a4019be4e90e11aaec1e7be3fb4c0265dcbeb47fa6fcff66930da296f5d43</citedby><cites>FETCH-LOGICAL-c362t-c179a4019be4e90e11aaec1e7be3fb4c0265dcbeb47fa6fcff66930da296f5d43</cites><orcidid>0000-0003-2405-9501 ; 0000-0003-3852-8751 ; 0000-0001-7170-3780 ; 0000-0002-2469-9587 ; 0000-0001-6849-6602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envpol.2023.121628$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37059171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pencik, Ondrej</creatorcontrib><creatorcontrib>Molnarova, Katarina</creatorcontrib><creatorcontrib>Durdakova, Michaela</creatorcontrib><creatorcontrib>Kolackova, Martina</creatorcontrib><creatorcontrib>Klofac, Daniel</creatorcontrib><creatorcontrib>Kucsera, Attilla</creatorcontrib><creatorcontrib>Capal, Petr</creatorcontrib><creatorcontrib>Svec, Pavel</creatorcontrib><creatorcontrib>Bytesnikova, Zuzana</creatorcontrib><creatorcontrib>Richtera, Lukas</creatorcontrib><creatorcontrib>Brtnický, Martin</creatorcontrib><creatorcontrib>Adam, Vojtech</creatorcontrib><creatorcontrib>Huska, Dalibor</creatorcontrib><title>Not so dangerous? PET microplastics toxicity on freshwater microalgae and cyanobacteria</title><title>Environmental pollution (1987)</title><addtitle>Environ Pollut</addtitle><description>Microalgae and cyanobacteria are among the most important primary producers and are responsible for the production of 50–80% of the oxygen on Earth. They can be significantly affected by plastic pollution, as the vast majority of plastic waste ends up in rivers and then the oceans. This research focuses on green microalgae Chlorella vulgaris (C. vulgaris), Chlamydomonas reinhardtii (C. reinhardtii), filamentous cyanobacterium Limnospira (Arthrospira) maxima (L.(A.) maxima) and how they are affected by environmentally relevant PET-MPs (polyethylene-terephtalate microplastics). Manufactured PET-MPs have asymmetric shape, size between 3 and 7 μm and were used in concentrations ranging from 5 mg/L to 80 mg/L. The highest inhibitory rate of growth was found in C. reinhardtii (−24%). Concentration-dependent changes in chlorophyll a composition were found in C. vulgaris and C. reinhardtii, not in L. (A.) maxima. Furthermore, cell damage was detected in all three organisms by CRYO-SEM (shriveling, cell wall disruption), but the cyanobacterium was the least damaged. A PET-fingerprint was detected on the surface of all tested organisms using FTIR, indicating the adherence of PET-MPs. The highest rate of PET-MPs adsorption was detected in L. (A.) maxima. Specifically, characteristic spectra were observed at ∼721, 850, 1100, 1275, 1342, and 1715 cm−1 which are specific for functional groups of PET-MPs. Nitrogen and carbon content significantly increased in L. (A.) maxima under exposure to 80 mg/L due to the PET-MPs adherence and mechanical stress. In all three tested organisms, weak exposure-related ROS generation was detected. In general, cyanobacteria seem to be more resistant to the effects of MPs. However, organisms in the aquatic environment are exposed to MPs over a longer time scale, so it is important to use the present findings for further longer-term experiments on environmentally relevant organisms.
[Display omitted]
•Concentration-dependent decrease in chlorophyll a composition in eukaryotes (C. vulgaris, C. reinhardtii).•Slightly inhibitory effect on growth and mechanical damage observed in eukaryotic species.•Cell surface showed high interaction rate with the PET-MPs in L. (A.) maxima.•Increase in L. (A.) maxima carbon and nitrogen content after exposure to high concentrations of PET-MPs.</description><subject>C. reinhardtii</subject><subject>C. vulgaris</subject><subject>Chlorella vulgaris</subject><subject>Chlorophyll A</subject><subject>Cyanobacteria</subject><subject>Fresh Water</subject><subject>L. (A.) maxima</subject><subject>Microalgae</subject><subject>Microplastic synthesis</subject><subject>Microplastics</subject><subject>Microplastics - toxicity</subject><subject>Plastics - toxicity</subject><subject>Stress</subject><subject>Toxicity</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water pollution</subject><issn>0269-7491</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PGzEQhi0EgpTyDyrkI5dN_bXe7IWqQmlBQsAhFUdr1jtOHW3Wqb0J5N_X0aY9cprDPPPxPoR84WzKGddfV1Psd5vQTQUTcsoF12J2QiZ8VslCK6FOyYQJXReVqvkF-ZTSijGmpJTn5EJWrKx5xSfk9SkMNAXaQr_EGLbpG32ZL-ja2xg2HaTB20SH8O6tH_Y09NRFTL_fYMA4QtAtASn0LbV76EMDNrc8fCZnDrqEV8d6SX79mC_u7ovH558Pd98fCyu1GArLqxoU43WDCmuGnAOg5Vg1KF2jbE5QtrbBRlUOtLPOaV1L1oKotStbJS_Jzbh3E8OfLabBrH2y2HXQY05jxCwvn7Gy5BlVI5q_TimiM5vo1xD3hjNzUGpWZlRqDkrNqDSPXR8vbJs1tv-H_jnMwO0IYM658xhNsh57i62PaAfTBv_xhb9Vy4tx</recordid><startdate>20230715</startdate><enddate>20230715</enddate><creator>Pencik, Ondrej</creator><creator>Molnarova, Katarina</creator><creator>Durdakova, Michaela</creator><creator>Kolackova, Martina</creator><creator>Klofac, Daniel</creator><creator>Kucsera, Attilla</creator><creator>Capal, Petr</creator><creator>Svec, Pavel</creator><creator>Bytesnikova, Zuzana</creator><creator>Richtera, Lukas</creator><creator>Brtnický, Martin</creator><creator>Adam, Vojtech</creator><creator>Huska, Dalibor</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2405-9501</orcidid><orcidid>https://orcid.org/0000-0003-3852-8751</orcidid><orcidid>https://orcid.org/0000-0001-7170-3780</orcidid><orcidid>https://orcid.org/0000-0002-2469-9587</orcidid><orcidid>https://orcid.org/0000-0001-6849-6602</orcidid></search><sort><creationdate>20230715</creationdate><title>Not so dangerous? PET microplastics toxicity on freshwater microalgae and cyanobacteria</title><author>Pencik, Ondrej ; Molnarova, Katarina ; Durdakova, Michaela ; Kolackova, Martina ; Klofac, Daniel ; Kucsera, Attilla ; Capal, Petr ; Svec, Pavel ; Bytesnikova, Zuzana ; Richtera, Lukas ; Brtnický, Martin ; Adam, Vojtech ; Huska, Dalibor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-c179a4019be4e90e11aaec1e7be3fb4c0265dcbeb47fa6fcff66930da296f5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C. reinhardtii</topic><topic>C. vulgaris</topic><topic>Chlorella vulgaris</topic><topic>Chlorophyll A</topic><topic>Cyanobacteria</topic><topic>Fresh Water</topic><topic>L. (A.) maxima</topic><topic>Microalgae</topic><topic>Microplastic synthesis</topic><topic>Microplastics</topic><topic>Microplastics - toxicity</topic><topic>Plastics - toxicity</topic><topic>Stress</topic><topic>Toxicity</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pencik, Ondrej</creatorcontrib><creatorcontrib>Molnarova, Katarina</creatorcontrib><creatorcontrib>Durdakova, Michaela</creatorcontrib><creatorcontrib>Kolackova, Martina</creatorcontrib><creatorcontrib>Klofac, Daniel</creatorcontrib><creatorcontrib>Kucsera, Attilla</creatorcontrib><creatorcontrib>Capal, Petr</creatorcontrib><creatorcontrib>Svec, Pavel</creatorcontrib><creatorcontrib>Bytesnikova, Zuzana</creatorcontrib><creatorcontrib>Richtera, Lukas</creatorcontrib><creatorcontrib>Brtnický, Martin</creatorcontrib><creatorcontrib>Adam, Vojtech</creatorcontrib><creatorcontrib>Huska, Dalibor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pencik, Ondrej</au><au>Molnarova, Katarina</au><au>Durdakova, Michaela</au><au>Kolackova, Martina</au><au>Klofac, Daniel</au><au>Kucsera, Attilla</au><au>Capal, Petr</au><au>Svec, Pavel</au><au>Bytesnikova, Zuzana</au><au>Richtera, Lukas</au><au>Brtnický, Martin</au><au>Adam, Vojtech</au><au>Huska, Dalibor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Not so dangerous? PET microplastics toxicity on freshwater microalgae and cyanobacteria</atitle><jtitle>Environmental pollution (1987)</jtitle><addtitle>Environ Pollut</addtitle><date>2023-07-15</date><risdate>2023</risdate><volume>329</volume><spage>121628</spage><epage>121628</epage><pages>121628-121628</pages><artnum>121628</artnum><issn>0269-7491</issn><eissn>1873-6424</eissn><abstract>Microalgae and cyanobacteria are among the most important primary producers and are responsible for the production of 50–80% of the oxygen on Earth. They can be significantly affected by plastic pollution, as the vast majority of plastic waste ends up in rivers and then the oceans. This research focuses on green microalgae Chlorella vulgaris (C. vulgaris), Chlamydomonas reinhardtii (C. reinhardtii), filamentous cyanobacterium Limnospira (Arthrospira) maxima (L.(A.) maxima) and how they are affected by environmentally relevant PET-MPs (polyethylene-terephtalate microplastics). Manufactured PET-MPs have asymmetric shape, size between 3 and 7 μm and were used in concentrations ranging from 5 mg/L to 80 mg/L. The highest inhibitory rate of growth was found in C. reinhardtii (−24%). Concentration-dependent changes in chlorophyll a composition were found in C. vulgaris and C. reinhardtii, not in L. (A.) maxima. Furthermore, cell damage was detected in all three organisms by CRYO-SEM (shriveling, cell wall disruption), but the cyanobacterium was the least damaged. A PET-fingerprint was detected on the surface of all tested organisms using FTIR, indicating the adherence of PET-MPs. The highest rate of PET-MPs adsorption was detected in L. (A.) maxima. Specifically, characteristic spectra were observed at ∼721, 850, 1100, 1275, 1342, and 1715 cm−1 which are specific for functional groups of PET-MPs. Nitrogen and carbon content significantly increased in L. (A.) maxima under exposure to 80 mg/L due to the PET-MPs adherence and mechanical stress. In all three tested organisms, weak exposure-related ROS generation was detected. In general, cyanobacteria seem to be more resistant to the effects of MPs. However, organisms in the aquatic environment are exposed to MPs over a longer time scale, so it is important to use the present findings for further longer-term experiments on environmentally relevant organisms.
[Display omitted]
•Concentration-dependent decrease in chlorophyll a composition in eukaryotes (C. vulgaris, C. reinhardtii).•Slightly inhibitory effect on growth and mechanical damage observed in eukaryotic species.•Cell surface showed high interaction rate with the PET-MPs in L. (A.) maxima.•Increase in L. (A.) maxima carbon and nitrogen content after exposure to high concentrations of PET-MPs.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37059171</pmid><doi>10.1016/j.envpol.2023.121628</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2405-9501</orcidid><orcidid>https://orcid.org/0000-0003-3852-8751</orcidid><orcidid>https://orcid.org/0000-0001-7170-3780</orcidid><orcidid>https://orcid.org/0000-0002-2469-9587</orcidid><orcidid>https://orcid.org/0000-0001-6849-6602</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-7491 |
ispartof | Environmental pollution (1987), 2023-07, Vol.329, p.121628-121628, Article 121628 |
issn | 0269-7491 1873-6424 |
language | eng |
recordid | cdi_proquest_miscellaneous_2801980551 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | C. reinhardtii C. vulgaris Chlorella vulgaris Chlorophyll A Cyanobacteria Fresh Water L. (A.) maxima Microalgae Microplastic synthesis Microplastics Microplastics - toxicity Plastics - toxicity Stress Toxicity Water Pollutants, Chemical - analysis Water pollution |
title | Not so dangerous? PET microplastics toxicity on freshwater microalgae and cyanobacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Not%20so%20dangerous?%20PET%20microplastics%20toxicity%20on%20freshwater%20microalgae%20and%20cyanobacteria&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Pencik,%20Ondrej&rft.date=2023-07-15&rft.volume=329&rft.spage=121628&rft.epage=121628&rft.pages=121628-121628&rft.artnum=121628&rft.issn=0269-7491&rft.eissn=1873-6424&rft_id=info:doi/10.1016/j.envpol.2023.121628&rft_dat=%3Cproquest_cross%3E2801980551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801980551&rft_id=info:pmid/37059171&rft_els_id=S0269749123006309&rfr_iscdi=true |