Meta-analysis of material properties influencing nanoparticle plasma pharmacokinetics

[Display omitted] Thorough characterization of the plasma pharmacokinetics (PK) is a critical step in clinical development of novel therapeutics and is routinely performed for small molecules and biologics. However, there is a paucity of even basic characterization of PK for nanoparticle-based drug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2023-05, Vol.639, p.122951-122951, Article 122951
Hauptverfasser: Macedo, Briana, Patel, Manthan, Zaleski, Michael H., Mody, Parth, Ma, Xiaonan, Mei, Patrick, Myerson, Jacob W., Brenner, Jacob S., Glassman, Patrick M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122951
container_issue
container_start_page 122951
container_title International journal of pharmaceutics
container_volume 639
creator Macedo, Briana
Patel, Manthan
Zaleski, Michael H.
Mody, Parth
Ma, Xiaonan
Mei, Patrick
Myerson, Jacob W.
Brenner, Jacob S.
Glassman, Patrick M.
description [Display omitted] Thorough characterization of the plasma pharmacokinetics (PK) is a critical step in clinical development of novel therapeutics and is routinely performed for small molecules and biologics. However, there is a paucity of even basic characterization of PK for nanoparticle-based drug delivery systems. This has led to untested generalizations about how nanoparticle properties govern PK. Here, we present a meta-analysis of 100 nanoparticle formulations following IV administration in mice to identify any correlations between four PK parameters derived by non-compartmental analysis (NCA) and four cardinal properties of nanoparticles: PEGylation, zeta potential, size, and material. There was a statistically significant difference between the PK of particles stratified by nanoparticle properties. However, single linear regression between these properties and PK parameters showed poor predictability (r2  0.38, except for t1/2). This suggests that no single nanoparticle property alone is even moderately predictive of PK, while the combination of multiple nanoparticle features does provide moderate predictive power. Improved reporting of nanoparticle properties will enable more accurate comparison between nanoformulations and will enhance our ability to predict in vivo behavior and design optimal nanoparticles.
doi_str_mv 10.1016/j.ijpharm.2023.122951
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2801979340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037851732300371X</els_id><sourcerecordid>2801979340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-dd4f573940669539d2e6016b75180b0f2b52b214261597f65b56f7c8ce653a53</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCaAs2ST4EdvJCiHESypiU9aW40zAIS_sBKl_j0sKW1YjzdyZe-cgdE5wQjARV3Vi6-FduzahmLKEUJpzcoCWJJMsZqkUh2iJmcxiTiRboBPva4yxoIQdowWTmOc0pUv0-gyjjnWnm623PuqrqNUjOKubaHD9AG604CPbVc0EnbHdW9Tprh906JsGoqHRvtXRTxBt-g_bQRj4U3RU6cbD2b6u0Ob-bnP7GK9fHp5ub9axYYKPcVmmFZcsT7EQOWd5SUGE3wrJSYYLXNGC04KSlArCc1kJXnBRSZMZEJxpzlbocj4bon5O4EfVWm-gaXQH_eQVzTDJZc5SHKR8lhrXe--gUoOzrXZbRbDaAVW12gNVO6BqBhr2LvYWU9FC-bf1SzAIrmcBhD-_LDjljQ2ooLQOzKjK3v5j8Q1PmIno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801979340</pqid></control><display><type>article</type><title>Meta-analysis of material properties influencing nanoparticle plasma pharmacokinetics</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Macedo, Briana ; Patel, Manthan ; Zaleski, Michael H. ; Mody, Parth ; Ma, Xiaonan ; Mei, Patrick ; Myerson, Jacob W. ; Brenner, Jacob S. ; Glassman, Patrick M.</creator><creatorcontrib>Macedo, Briana ; Patel, Manthan ; Zaleski, Michael H. ; Mody, Parth ; Ma, Xiaonan ; Mei, Patrick ; Myerson, Jacob W. ; Brenner, Jacob S. ; Glassman, Patrick M.</creatorcontrib><description>[Display omitted] Thorough characterization of the plasma pharmacokinetics (PK) is a critical step in clinical development of novel therapeutics and is routinely performed for small molecules and biologics. However, there is a paucity of even basic characterization of PK for nanoparticle-based drug delivery systems. This has led to untested generalizations about how nanoparticle properties govern PK. Here, we present a meta-analysis of 100 nanoparticle formulations following IV administration in mice to identify any correlations between four PK parameters derived by non-compartmental analysis (NCA) and four cardinal properties of nanoparticles: PEGylation, zeta potential, size, and material. There was a statistically significant difference between the PK of particles stratified by nanoparticle properties. However, single linear regression between these properties and PK parameters showed poor predictability (r2 &lt; 0.10 for all analyses), while multivariate regressions showed improved predictability (r2 &gt; 0.38, except for t1/2). This suggests that no single nanoparticle property alone is even moderately predictive of PK, while the combination of multiple nanoparticle features does provide moderate predictive power. Improved reporting of nanoparticle properties will enable more accurate comparison between nanoformulations and will enhance our ability to predict in vivo behavior and design optimal nanoparticles.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2023.122951</identifier><identifier>PMID: 37059242</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Drug Compounding ; Meta-analysis ; Mice ; Nanoparticles ; Non-compartmental analysis ; Pharmacokinetics</subject><ispartof>International journal of pharmaceutics, 2023-05, Vol.639, p.122951-122951, Article 122951</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-dd4f573940669539d2e6016b75180b0f2b52b214261597f65b56f7c8ce653a53</citedby><cites>FETCH-LOGICAL-c365t-dd4f573940669539d2e6016b75180b0f2b52b214261597f65b56f7c8ce653a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpharm.2023.122951$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37059242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Macedo, Briana</creatorcontrib><creatorcontrib>Patel, Manthan</creatorcontrib><creatorcontrib>Zaleski, Michael H.</creatorcontrib><creatorcontrib>Mody, Parth</creatorcontrib><creatorcontrib>Ma, Xiaonan</creatorcontrib><creatorcontrib>Mei, Patrick</creatorcontrib><creatorcontrib>Myerson, Jacob W.</creatorcontrib><creatorcontrib>Brenner, Jacob S.</creatorcontrib><creatorcontrib>Glassman, Patrick M.</creatorcontrib><title>Meta-analysis of material properties influencing nanoparticle plasma pharmacokinetics</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted] Thorough characterization of the plasma pharmacokinetics (PK) is a critical step in clinical development of novel therapeutics and is routinely performed for small molecules and biologics. However, there is a paucity of even basic characterization of PK for nanoparticle-based drug delivery systems. This has led to untested generalizations about how nanoparticle properties govern PK. Here, we present a meta-analysis of 100 nanoparticle formulations following IV administration in mice to identify any correlations between four PK parameters derived by non-compartmental analysis (NCA) and four cardinal properties of nanoparticles: PEGylation, zeta potential, size, and material. There was a statistically significant difference between the PK of particles stratified by nanoparticle properties. However, single linear regression between these properties and PK parameters showed poor predictability (r2 &lt; 0.10 for all analyses), while multivariate regressions showed improved predictability (r2 &gt; 0.38, except for t1/2). This suggests that no single nanoparticle property alone is even moderately predictive of PK, while the combination of multiple nanoparticle features does provide moderate predictive power. Improved reporting of nanoparticle properties will enable more accurate comparison between nanoformulations and will enhance our ability to predict in vivo behavior and design optimal nanoparticles.</description><subject>Animals</subject><subject>Drug Compounding</subject><subject>Meta-analysis</subject><subject>Mice</subject><subject>Nanoparticles</subject><subject>Non-compartmental analysis</subject><subject>Pharmacokinetics</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwCaAs2ST4EdvJCiHESypiU9aW40zAIS_sBKl_j0sKW1YjzdyZe-cgdE5wQjARV3Vi6-FduzahmLKEUJpzcoCWJJMsZqkUh2iJmcxiTiRboBPva4yxoIQdowWTmOc0pUv0-gyjjnWnm623PuqrqNUjOKubaHD9AG604CPbVc0EnbHdW9Tprh906JsGoqHRvtXRTxBt-g_bQRj4U3RU6cbD2b6u0Ob-bnP7GK9fHp5ub9axYYKPcVmmFZcsT7EQOWd5SUGE3wrJSYYLXNGC04KSlArCc1kJXnBRSZMZEJxpzlbocj4bon5O4EfVWm-gaXQH_eQVzTDJZc5SHKR8lhrXe--gUoOzrXZbRbDaAVW12gNVO6BqBhr2LvYWU9FC-bf1SzAIrmcBhD-_LDjljQ2ooLQOzKjK3v5j8Q1PmIno</recordid><startdate>20230525</startdate><enddate>20230525</enddate><creator>Macedo, Briana</creator><creator>Patel, Manthan</creator><creator>Zaleski, Michael H.</creator><creator>Mody, Parth</creator><creator>Ma, Xiaonan</creator><creator>Mei, Patrick</creator><creator>Myerson, Jacob W.</creator><creator>Brenner, Jacob S.</creator><creator>Glassman, Patrick M.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230525</creationdate><title>Meta-analysis of material properties influencing nanoparticle plasma pharmacokinetics</title><author>Macedo, Briana ; Patel, Manthan ; Zaleski, Michael H. ; Mody, Parth ; Ma, Xiaonan ; Mei, Patrick ; Myerson, Jacob W. ; Brenner, Jacob S. ; Glassman, Patrick M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-dd4f573940669539d2e6016b75180b0f2b52b214261597f65b56f7c8ce653a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Drug Compounding</topic><topic>Meta-analysis</topic><topic>Mice</topic><topic>Nanoparticles</topic><topic>Non-compartmental analysis</topic><topic>Pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macedo, Briana</creatorcontrib><creatorcontrib>Patel, Manthan</creatorcontrib><creatorcontrib>Zaleski, Michael H.</creatorcontrib><creatorcontrib>Mody, Parth</creatorcontrib><creatorcontrib>Ma, Xiaonan</creatorcontrib><creatorcontrib>Mei, Patrick</creatorcontrib><creatorcontrib>Myerson, Jacob W.</creatorcontrib><creatorcontrib>Brenner, Jacob S.</creatorcontrib><creatorcontrib>Glassman, Patrick M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macedo, Briana</au><au>Patel, Manthan</au><au>Zaleski, Michael H.</au><au>Mody, Parth</au><au>Ma, Xiaonan</au><au>Mei, Patrick</au><au>Myerson, Jacob W.</au><au>Brenner, Jacob S.</au><au>Glassman, Patrick M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meta-analysis of material properties influencing nanoparticle plasma pharmacokinetics</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2023-05-25</date><risdate>2023</risdate><volume>639</volume><spage>122951</spage><epage>122951</epage><pages>122951-122951</pages><artnum>122951</artnum><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted] Thorough characterization of the plasma pharmacokinetics (PK) is a critical step in clinical development of novel therapeutics and is routinely performed for small molecules and biologics. However, there is a paucity of even basic characterization of PK for nanoparticle-based drug delivery systems. This has led to untested generalizations about how nanoparticle properties govern PK. Here, we present a meta-analysis of 100 nanoparticle formulations following IV administration in mice to identify any correlations between four PK parameters derived by non-compartmental analysis (NCA) and four cardinal properties of nanoparticles: PEGylation, zeta potential, size, and material. There was a statistically significant difference between the PK of particles stratified by nanoparticle properties. However, single linear regression between these properties and PK parameters showed poor predictability (r2 &lt; 0.10 for all analyses), while multivariate regressions showed improved predictability (r2 &gt; 0.38, except for t1/2). This suggests that no single nanoparticle property alone is even moderately predictive of PK, while the combination of multiple nanoparticle features does provide moderate predictive power. Improved reporting of nanoparticle properties will enable more accurate comparison between nanoformulations and will enhance our ability to predict in vivo behavior and design optimal nanoparticles.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37059242</pmid><doi>10.1016/j.ijpharm.2023.122951</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2023-05, Vol.639, p.122951-122951, Article 122951
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_2801979340
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Drug Compounding
Meta-analysis
Mice
Nanoparticles
Non-compartmental analysis
Pharmacokinetics
title Meta-analysis of material properties influencing nanoparticle plasma pharmacokinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meta-analysis%20of%20material%20properties%20influencing%20nanoparticle%20plasma%20pharmacokinetics&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Macedo,%20Briana&rft.date=2023-05-25&rft.volume=639&rft.spage=122951&rft.epage=122951&rft.pages=122951-122951&rft.artnum=122951&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2023.122951&rft_dat=%3Cproquest_cross%3E2801979340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2801979340&rft_id=info:pmid/37059242&rft_els_id=S037851732300371X&rfr_iscdi=true