Ordered Mesoporous Intermetallic Ga‐Pt Nanoparticles: Phase‐Controlled Synthesis and Performance in Oxygen Reduction Electrocatalysis
The intermetallic phase control is a promising strategy to optimize the physicochemical properties of ordered intermetallic compounds and engineer their performance in various (electro)catalytic reactions. However, the intermetallic phase‐dependent catalytic performance is still rarely reported beca...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-06, Vol.62 (24), p.e202304420-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The intermetallic phase control is a promising strategy to optimize the physicochemical properties of ordered intermetallic compounds and engineer their performance in various (electro)catalytic reactions. However, the intermetallic phase‐dependent catalytic performance is still rarely reported because of the difficulty in synthesizing ordered intermetallics with precisely controlled phase structures at atomic level, especially having ordered mesoscopic structure/morphology. Here, we successfully reported a precise synthesis of two phase‐pure mesoporous intermetallic gallium‐platinum (meso‐i‐Ga‐Pt) nanoparticles, including meso‐i‐Ga3Pt5 with an orthorhombic space group and meso‐i‐Ga1Pt1 with a non‐symmorphic chiral cubic space group. The intermetallic phase control of ordered meso‐i‐Ga‐Pt nanoparticles was realized by carefully tuning the induced Ga salts with different anions that optimized the free energies during the synthesis. The intermetallic phase‐dependent catalytic performance of ordered meso‐i‐Ga‐Pt was systematically evaluated for oxygen reduction reaction (ORR) electrocatalysis, with completely opposite catalytic performance in alkaline media. Interestingly, ordered meso‐i‐Ga1Pt1 catalyst with chiral atomic arrangements disclosed unexpected high ORR activity and stability with 5.9 and 3.2 enhancement factors in mass activity compared to those of meso‐i‐Ga3Pt5 and commercial Pt/C.
Ordered mesoporous intermetallic Ga‐Pt nanoparticles, including Ga3Pt5 with an orthorhombic phase and Ga1Pt1 with a non‐symmorphic chiral cubic phase, were successfully synthesized by a concurrent template method in presence of different Ga sources. The resulting mesoporous intermetallic Ga‐Pt disclosed remarkably phase‐dependent catalytic performance in oxygen reduction electrocatalysis, with unexpected high activity of Ga1Pt1 compared to the Ga3Pt5 counterpart. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202304420 |